自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(652)
  • 收藏
  • 关注

原创 人体姿态估计在Jetson Nano上的应用指南:深度学习模型部署与性能调优详解

往期文章RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404。

2026-01-27 14:09:56 13

原创 Mamba-MLLA注意力机制深度解析与YOLOv11模型完美集成实战指南

购买即可解锁300+YOLO优化文章,并且还有海量深度学习复现项目,价格仅需两杯奶茶的钱,别人有的本专栏也有!

2026-01-27 14:08:28 13

原创 YOLOv12与CA注意力机制结合:突破性检测精度提升指南

购买即可解锁300+YOLO优化文章,并且还有海量深度学习复现项目,价格仅需两杯奶茶的钱,别人有的本专栏也有!

2026-01-27 14:07:06 13

原创 YOLOv8架构突破:基于IAFF注意力融合机制的多尺度特征自适应优化

购买即可解锁300+YOLO优化文章,并且还有海量深度学习复现项目,价格仅需两杯奶茶的钱,别人有的本专栏也有!@[TOC]:当前目标检测模型在复杂场景下普遍存在特征融合效率低下的问题。传统特征金字塔网络(FPN)采用简单相加或拼接方式进行多尺度特征融合,未能充分考虑不同尺度特征图之间的语义差异和空间权重分布。

2026-01-27 14:02:38 10

原创 基于注意力去噪网络ADNet的YOLOv8图像预处理增强实战指南

ADNet与YOLOv8的集成创新性地解决了噪声环境下的目标检测性能衰减问题。通过注意力机制的渐进式去噪和特征增强,在多个权威数据集上实现了显著性能提升。

2026-01-27 14:01:19 10

原创 基于AOD-PONet去雾网络的YOLOv8改进实战:突破雾霾环境目标检测瓶颈

购买即可解锁300+YOLO优化文章,并且还有海量深度学习复现项目,价格仅需两杯奶茶的钱,别人有的本专栏也有!

2026-01-27 14:00:14 90

原创 YOLOv8图像去雾新突破:基于UnfogNet的恶劣天气目标检测实战

购买即可解锁300+YOLO优化文章,并且还有海量深度学习复现项目,价格仅需两杯奶茶的钱,别人有的本专栏也有!

2026-01-27 13:59:11 230

原创 基于MobileNetV4与YOLOv8的高效模型设计与优化:移动端实时目标检测部署全流程解析

MobileNetV4融合YOLOv8为移动端目标检测提供了一个优秀的解决方案。通过Universal Inverted Bottleneck和Mobile MQA注意力机制的创新,该方案在保持检测精度的同时显著降低了计算复杂度。高效的架构设计:UIB统一了不同瓶颈块设计,Mobile MQA实现了39%的加速移动端友好:专为EdgeTPU和移动GPU优化灵活的模型选择:提供从Small到Hybrid-Large的多种配置完整的工具链:支持训练、优化、量化和多格式导出。

2026-01-26 17:16:50 15

原创 边缘端旋转目标检测实战:基于YOLOv8-OBB模型的海思3516DV300芯片部署全流程解析

-1, 3, C3, [512, False]] # 18 - 替换C2f为C3 (P4/16-medium)[-1, 3, C3, [1024, False]] # 21 - 替换C2f为C3 (P5/32-large)[-1, 3, C3, [256, False]] # 15 - 替换C2f为C3 (P3/8-small)[-1, 3, C3, [512, False]] # 12 - 替换C2f为C3。m: [0.75, 0.75, 0.75] # YOLOv8m模型缩放系数。

2026-01-26 17:15:38 238

原创 RK3568平台YOLOv11模型部署全流程实战:环境搭建、模型转换与性能优化解析

在AI边缘计算领域,瑞芯微RK3568芯片凭借其强大的NPU算力和丰富的接口资源,成为了众多开发者的首选平台。然而,瑞芯微官方文档虽然提供了YOLO11预训练模型的部署方案,但对于需要自定义数据集训练的开发者来说,从模型训练到板端部署的完整流程却缺乏详细指导。本文将带你走完从环境搭建、数据准备、模型训练到最终板端部署的完整技术路线,并分享实际开发中遇到的各种坑点和解决方案。让我们一起探索如何在RK3568平台上实现30FPS稳定推理的YOLO11目标检测应用!

2026-01-26 17:14:32 18

原创 RK3568平台YOLOv11模型部署教程:环境配置与端侧推理优化全流程解析

在AI边缘计算领域,瑞芯微RK3568芯片凭借其强大的NPU算力和丰富的接口资源,成为了众多开发者的首选平台。然而,瑞芯微官方文档虽然提供了YOLO11预训练模型的部署方案,但对于需要自定义数据集训练的开发者来说,从模型训练到板端部署的完整流程却缺乏详细指导。本文将带你走完从环境搭建、数据准备、模型训练到最终板端部署的完整技术路线,并分享实际开发中遇到的各种坑点和解决方案。让我们一起探索如何在RK3568平台上实现30FPS稳定推理的YOLO11目标检测应用!

2026-01-26 17:13:09 125

原创 YOLOv12与CA注意力机制结合:突破性检测精度改进指南

购买即可解锁300+YOLO优化文章,并且还有海量深度学习复现项目,价格仅需两杯奶茶的钱,别人有的本专栏也有!

2026-01-25 13:48:32 14

原创 YOLOv11定位精度提升革命:基于InnerMPDIoU损失函数的终极优化指南

购买即可解锁300+YOLO优化文章,并且还有海量深度学习复现项目,价格仅需两杯奶茶的钱,别人有的本专栏也有!目标检测模型的性能瓶颈始终集中在边界框回归的精度上。传统IoU系列损失函数(如DIoU、CIoU)虽然考虑了重叠面积、中心点距离和宽高比,但其优化过程依然存在宏观层面的粗放性。MPDIoU的提出通过直接最小化预测框与真实框之间的左上和右下两个关键点的距离,简化了优化路径。然而,其改进版本InnerMPDIoU通过引入“内部极值点”概念,将优化焦点从边界框的四个角点转向了内部最关键的偏移点,实现了损

2026-01-25 13:47:38 11

原创 Shape-IoU损失函数创新应用:YOLOv11检测性能全面提升教程

目标检测领域的最新研究数据显示,损失函数优化对模型性能提升贡献度达到23.7%。基于Focal Loss改进的QualityFocalLoss(QFL)在YOLOv11框架中实现了突破性进展,在COCO数据集上使mAP指标提升2.1-3.4%,特别在困难样本检测方面表现突出。本教程详细解析QFL的核心机制,并提供完整的代码实现方案。

2026-01-25 13:46:46 15

原创 Shape-IoU损失函数深度解析:YOLOv11精准目标检测优化全攻略

Shape-IoU通过引入形状和尺度感知机制,有效解决了传统IoU损失对边界框几何特性不敏感的问题。在多个权威数据集上验证了其卓越性能。

2026-01-25 13:45:49 10

原创 Mamba-MLLA注意力机制深度解析:YOLOv11模型完美集成实战指南

购买即可解锁300+YOLO优化文章,并且还有海量深度学习复现项目,价格仅需两杯奶茶的钱,别人有的本专栏也有!

2026-01-25 13:44:59 11

原创 基于Docker与TensorRT的YOLO优化实现:高效人体检测详解

需要在有界面的主机上安装,远程ssh无法使用窗口# 建议使用conda虚拟环境 # 安装 pip install labelImg # 启动 labelImg。

2026-01-25 13:43:47 11

原创 Ubuntu系统CMake+RTSP推流开发详解:从环境配置到完整实现

RTSP(Real-Time Streaming Protocol,实时流媒体协议)是一种用于控制实时音视频流传输的网络协议,属于应用层协议(基于TCP或UDP)。​功能定位​:类似流媒体的“远程控制”协议,负责 ​播放、暂停、停止、快进​ 等操作(但不直接传输数据)。​类比​:RTSP 像电视遥控器,而实际视频数据通过 RTP(Real-time Transport Protocol)传输。​典型应用场景​:IP摄像头监控系统视频直播(如体育赛事)视频点播(如IPTV)

2026-01-25 13:27:44 11

原创 Ubuntu环境下CMake配置与RTSP推流实战教程

往期文章RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404。

2026-01-25 13:26:47 12

原创 YOLOv5模型在TensorRT中的INT8量化与多线程优化部署详解

在我们之前的介绍中提到,我们使用了YoloLayer_TRT插件,其功能是decode onnx模型的输出,这里的decode算子用GPU实现并加速了,以提高模型吞吐量。实现TensorRT Plugin需要实现插件类,和插件工厂类,并对插件进行注册。步骤如下:1.定义插件版本和插件名:位置:yoloPlugins.h 第51行// 定义插件版本和插件名namespace2.实现插件类位置:yoloPlugins.h 第58行插件类需要继承IPluginV2DynamicExt类。

2026-01-25 13:26:08 9

原创 基于TensorRT的YOLOv5 INT8量化与多线程部署全流程解析

在我们之前的介绍中提到,我们使用了YoloLayer_TRT插件,其功能是decode onnx模型的输出,这里的decode算子用GPU实现并加速了,以提高模型吞吐量。实现TensorRT Plugin需要实现插件类,和插件工厂类,并对插件进行注册。步骤如下:1.定义插件版本和插件名:位置:yoloPlugins.h 第51行// 定义插件版本和插件名namespace2.实现插件类位置:yoloPlugins.h 第58行插件类需要继承IPluginV2DynamicExt类。

2026-01-25 13:25:20 8

原创 基于Jetson平台的YOLOv5目标跟踪实战教程:实时检测与深度学习部署详解

往期文章RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404。

2026-01-25 13:24:44 10

原创 Jetson平台上的YOLOv5目标跟踪实战:部署与性能优化指南

往期文章RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404。

2026-01-25 13:22:43 8

原创 人体姿态估计在Jetson Nano上的应用指南:深度学习模型部署与调优详解

往期文章RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404。

2026-01-25 13:22:09 8

原创 YOLOv5在Jetson NX/Nano上的TensorRT部署教程:高效目标检测全流程解析

往期文章RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404。

2026-01-25 13:21:26 12

原创 Jetson平台加速:利用TensorRT实现实时背景虚化

往期文章RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404。

2026-01-25 13:19:46 9

原创 TensorRT部署实战:INT8量化优化与RTSP推流实现行人检测与密度分析

往期文章RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404。

2026-01-25 10:06:38 87

原创 理解CUDA架构:开启深度学习部署之旅

RTSP(Real-Time Streaming Protocol,实时流媒体协议)是一种用于控制实时音视频流传输的网络协议,属于应用层协议(基于TCP或UDP)。​功能定位​:类似流媒体的“远程控制”协议,负责 ​播放、暂停、停止、快进​ 等操作(但不直接传输数据)。​类比​:RTSP 像电视遥控器,而实际视频数据通过 RTP(Real-time Transport Protocol)传输。​典型应用场景​:IP摄像头监控系统视频直播(如体育赛事)视频点播(如IPTV)

2026-01-25 09:58:09 19

原创 从理论到实践:深度学习中的CUDA基础详解

CUDA是一种并行计算平台和编程模型,由NVIDIA推出,它可以利用GPU(图形处理器)进行高效的并行计算。使用CUDA编程可以提高计算密集型应用程序的性能,例如图像处理、科学计算、机器学习、深度学习等。相比于使用CPU进行串行计算,使用GPU并行计算可以大大提高计算速度和效率(如图像数据归一化,需要对每个像素值进行操作)。定义kernel核函数:首先需要定义一个kernel函数,用于在GPU上执行并行计算任务。使用__global__关键字来标记kernel函数,表示它将在GPU上执行。

2026-01-25 09:57:03 20

原创 Docker+TensorRT:YOLO人体检测部署与推理教程

往期文章RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404。

2026-01-25 09:54:16 161

原创 深度学习工程:Ubuntu+TensorRT推理部署详解

NetworkDefinition接口被用来定义模型。// bit shift,移位:y左移N位,相当于 y * 2^N// kEXPLICIT_BATCH(显性Batch)为0,1U << 0 = 1// static_cast:强制类型转换接口createNetworkV2接受配置参数,参数用按位标记的方式传入。

2026-01-25 09:52:29 8

原创 YOLOv13 新思路解析:SFHF + 傅里叶频域特征融合实现 mAP 提升 7.66%

SFHF(Spatial-Frequency Hybrid Fusion)模块是一种融合空间域局部特征与频域全局特征的混合特征提取结构,旨在充分利用卷积在局部建模上的优势与傅里叶变换在全局建模上的长程依赖能力。:基于傅里叶变换的频域特征提取单元。:利用多尺度空洞卷积的局部特征混合器。(应为 Global):结合频域处理的全局特征混合器。SFHF_FFN:多尺度深度可分离卷积前馈网络(Feed-Forward Network)。这些模块通过SFHF_Mixer和SFHF_Block。

2026-01-24 13:51:36 152

原创 融合 Dual‑ViT 的 YOLOv5 改进方案:注意力机制带来的性能与效率优化

在目标检测领域,Transformer架构正以更强的全局建模能力和更优的多尺度特征融合特性颠覆传统CNN范式。本文基于京东提出的Dual-ViT(双视觉Transformer)(TPAMI 2023),结合YOLOv5框架进行实战级改进,通过语义-像素双路径设计实现精度与效率的双重突破。Dual-ViT核心原理:语义压缩与像素细节的协同机制YOLOv5集成方案:从代码修改到训练调优的全流程实战性能对比:与SE/CBAM等经典注意力机制的效果差异工程化技巧:如何避免训练崩溃与显存溢出。

2026-01-24 13:50:51 15

原创 从零开始玩转边缘 AI:Jetson Nano 深度学习环境搭建与 YOLOv5 部署指南

Jetson Nano是NVIDIA推出的嵌入式AI开发板,凭借其强大的GPU计算能力和完善的软件生态系统,成为边缘AI部署的理想平台。本教程源于作者团队参加2024中国机器人大赛暨RoboCup机器人世界杯中国赛机器人先进视觉3D识别赛道的实战经验,是一份经过验证的环境部署指南。

2026-01-24 13:49:58 106

原创 提升多尺度检测能力:YOLOv8 中 P2 小目标与 P6 超大目标检测头添加方法解析

上采样是指将特征图的空间尺寸变大(例如从 20×20 → 80×80),用来提升图像的分辨率。常见于解码器结构或特征融合中。下采样是指将特征图的空间尺寸缩小(例如从 256×256 → 128×128),通常用于减少计算量、提取更高级语义特征。操作目的方法尺寸变化上采样放大特征图插值算法变大(如2×)下采样压缩特征图、提取语义stride卷积等变小(如1/2)

2026-01-24 13:48:51 18

原创 RK3588 高分辨率多摄像头系统优化实战:48MP 单摄与双摄分时复用方案解析

在现代嵌入式视觉应用中,高分辨率多摄像头系统已成为产品差异化的关键技术。RK3588作为瑞芯微的旗舰级处理器,凭借其强大的ISP处理能力和丰富的MIPI接口资源,为开发者提供了实现复杂摄像头配置的硬件基础。本文将深入探讨RK3588平台上从单摄48M高分辨率到双摄分时复用的完整实现方案,涵盖硬件资源分析、驱动配置、系统优化等多个层面的技术细节。本文深入探讨了基于RK3588平台的高分辨率多摄像头系统实现方案,从硬件资源分析到软件配置优化,提供了完整的技术实现路径。

2026-01-24 13:47:21 14

原创 从 Transformer 到 Mamba:YOLOv8 中 VSSBlock(MambaLayer)的核心原理解析与结构演进

高效的长距离依赖捕获:Mamba的核心SSM结构结合多向扫描,使其能够像Transformer一样有效地捕捉全局上下文信息,而避免了自注意力机制带来的二次方计算成本。兼顾局部与全局信息:VSS块通过深度可分离卷积保留了对局部纹理细节的感知,同时通过SS2D引入了强大的全局建模能力。这种结合使得模型在处理各种尺度的目标时都能表现出色。线性计算复杂度:Mamba的线性复杂度使其能够处理更高分辨率的图像,这对于需要精确检测小目标或处理超高清视频流的场景尤为有利。

2026-01-24 13:46:23 12

原创 YOLOv8 中 SEAM 注意力机制的融合方法解析与遮挡场景下的性能分析

本文深入探讨了YOLOv8中集成SEAM注意力机制的整个过程,从理论基础到具体实现,再到实际应用。我们详细解析了SEAM模块的设计理念——通过指数级增强未遮挡区域的特征响应来补偿遮挡带来的信息损失,并深入剖析了其内部的ResidualDCovNFC以及核心的操作。MultiSEAM作为SEAM的扩展,通过多尺度分支进一步提升了特征捕获能力。通过将SEAM/MultiSEAM模块巧妙地嵌入到YOLOv8的颈部网络中,我们期望能够赋予模型更强大的遮挡感知能力。

2026-01-24 13:45:19 18

原创 YOLOv8 实战进阶:RepNCSPELAN_CAA 模块的集成方法与性能提升分析(mAP +3.3)

我用夸克网盘分享了「ultralytics-RepNCSPELAN_CAA.zip」,点击链接即可保存。找到 n = n_ = max(round(n * depth), 1) if n > 1 else n # depth gain。在from ultralytics.nn.modules import (中添加。链接:https://pan.quark.cn/s/d56fef471eae。找到args = [c1, c2, *args[1:]]添加。在from .block import (添加。

2026-01-24 13:44:21 13

原创 硬核实战:YOLOv8-Pose在RK3588上的ONNX转换、量化加速与高效部署指南

本次深度教程我们探索了YOLOv8-Pose模型在RK3588平台上的ONNX转换与推理实战。这不仅仅是简单的格式转换,更是一次针对特定硬件限制的深度模型优化过程。我们深刻理解了为何YOLOv8原生ONNX模型难以直接在RK3588 NPU上高效运行,以及**通过将模型内嵌的通过将模型内嵌的复杂后处理逻辑从ONNX计算图中剥离,并转移到CPU端进行实现,是解决兼容性与性能问题的关键策略。**核心核心回顾:我们采用了NPU负责高效的前向推理,CPU负责灵活、可控的后处理的协同工作模式。

2026-01-23 10:49:51 17

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除