网络基本拓扑性质(随笔)

本文探讨了无向网络中的巨片概念,重点介绍了有向图的连通性和强弱连通性。还剖析了有向网络中的蝴蝶结结构,包括强连通核、入部、出部和卷须。此外,文章提及了网络中的度概念,以及在加权网络中如何计算节点度。最后,提到迪杰斯特拉算法在单源最短路径问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无向网络中的巨片概念

在一个网络中会存在一个巨片,它的节点数占整个网络节点数的比例最大,而且,通常巨片是唯一的。因为若是存在两个巨片,两个巨片中的两个点很有可能会合并成一个点,从而形成一个更大的巨片

巨片的蝴蝶结结构

有向图的连通性

强连通性:如果一个图中的任意两个顶点a和b,既存在a到b的路径,又存在b到a的路径,则称a与b顶点是强连通的

弱连通性:如果一个图不是强连通的,而把图中有向边都看作无向边后,得到的图是连通的,那么a顶点与b顶点就是弱连通的

有向网络中的蝴蝶结结构

一个网络中存在连通片,包含了相当一部分的弱连通片,则称为弱连通巨片。

这样的弱连通片往往具有包含4个部分的蝴蝶结结构:

1.强连通核:它位于网络的中心,并且任意两个顶点都是强连通的

2.入部:对于入部中的任意一个顶点,都存在通往强连通核的路径

3.出部:对于它的任意一个顶点,都能被强连通核中的任意一个顶点通往

4.卷须:包含既无法到达强连通核,又无法从强连通核到达的顶点

(存在挂在入部的卷须节点到挂在出部的卷须节点的有向路径,路径上的节点称为管子)

网络的度概念

度是用来描述网络中的节点属性的

1.无向网络中节点的度:节点a的度为与其直接相连的边的个数

(网络中所有节点度的平均值称为平均度)

2.有向网络中节点的度:分为入度和出度

->入度:对于节点a的度,指从其他节点直接指向a节点的边的数量

->出度:同样对于节点a的度,指从a节点指向其他节点的边的数量

3.加权网络中节点的度:对于节点a,可以定义其强度,为与其直接相连的边的权值和。如果该网络为有向加权网络,则又可定义出节点a的出强度(所有出边的权值和),入强度(所有入边的权值和)

Dijsktra算法

Dijsktra算法是基于贪心的单源最短路算法。

大致思路为确定一个源点,然后每次循环中找与单源源点距离最短的点(且没被走过),并打上标记,同时遍历该点的所有出边,根据松弛操作更新各个终点最短路,最后能够求出各个点到单源的最短路径

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值