L1-006. 连续因子
一个正整数N的因子中可能存在若干连续的数字。例如630可以分解为3*5*6*7,其中5、6、7就是3个连续的数字。给定任一正整数N,要求编写程序求出最长连续因子的个数,并输出最小的连续因子序列。
输入格式:
输入在一行中给出一个正整数N(1<N<231)。
输出格式:
首先在第1行输出最长连续因子的个数;然后在第2行中按“因子1*因子2*……*因子k”的格式输出最小的连续因子序列,其中因子按递增顺序输出,1不算在内。
输入样例:630输出样例:
3 5*6*7
解题思路
暴搜
代码
#include <iostream>
#include <cstdio>
#include <map>
#include <cmath>
using namespace std;
long long int findl(long long int n,long long int x,long long int len){
if(n%x==0){///3能除开就看4,以此类推
len = findl(n/x,x+1,len+1);
}
return len;
}
int main()
{
long long int n;
scanf("%lld",&n);
long long int ans = 0;
long long int tans = 0;
long long int first = 0;
for(int i = 2; i<=sqrt(n); ++i){
if(n%i==0){///如果2能除开,就看3
tans = findl(n/i,i+1,1);
if(tans > ans ) {
ans = tans;
first = i;
}
}
}
///这里注意特殊情况,如果因子只有一和他本身的话
if(ans == 0) printf("1\n%lld",n);
else{
printf("%lld\n%lld",ans,first);
for(int i = 1;i<ans;++i){
printf("*%lld",first+i);
}
}
return 0;
}