L2-004. 这是二叉搜索树吗?
一棵二叉搜索树可被递归地定义为具有下列性质的二叉树:对于任一结点,
- 其左子树中所有结点的键值小于该结点的键值;
- 其右子树中所有结点的键值大于等于该结点的键值;
- 其左右子树都是二叉搜索树。
所谓二叉搜索树的“镜像”,即将所有结点的左右子树对换位置后所得到的树。
给定一个整数键值序列,现请你编写程序,判断这是否是对一棵二叉搜索树或其镜像进行前序遍历的结果。
输入格式:
输入的第一行给出正整数N(<=1000)。随后一行给出N个整数键值,其间以空格分隔。
输出格式:
如果输入序列是对一棵二叉搜索树或其镜像进行前序遍历的结果,则首先在一行中输出“YES”,然后在下一行输出该树后序遍历的结果。数字间有1个空格,一行的首尾不得有多余空格。若答案是否,则输出“NO”。
输入样例1:7 8 6 5 7 10 8 11输出样例1:
YES 5 7 6 8 11 10 8输入样例2:
7 8 10 11 8 6 7 5输出样例2:
YES 11 8 10 7 5 6 8输入样例3:
7 8 6 8 5 10 9 11输出样例3:
NO
解题思路
输入的是先根遍历,除了根之外的序列被分为两部分,一部是大于跟的右儿子,一部分是小于根的左儿子,并且两者分界线相邻
根据输入给出的序列去 “构建” 一颗二叉搜索树,构建失败时,树的节点数一定小于n,此时还有一种可能是二叉树的镜像,再次构造镜像二叉搜索树,还是失败则不是二叉搜索树。因为题目要求给出后序遍历,所以直接在构造树的时候后序构造就好。
代码
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <cstring>
#include <set>
#include <queue>
#include <stack>
#include <stdlib.h>
#include <map>
using namespace std;
const int maxn = 1020;
const int INF = 0x3f3f3f3f;
bool isMirror;
int pre[1010];
vector<int> now;
void f(int l, int r){///左右区间
if(l > r) return;
int tr = l+1;///l+1 ~ tl 为左儿子区间
int tl = r;///tr ~ r 为右儿子区间
if(!isMirror){
while(tr <= r && pre[tr] < pre[l]) tr++;
while(tl > l && pre[tl] >= pre[l]) tl--;
}
else{
while(tr <= r && pre[tr] >= pre[l]) tr++;
while(tl > l && pre[tl] < pre[l]) tl--;
}
if(tr-tl != 1) return;///如果不是二叉搜索树
f(l+1,tl);///左
f(tr,r);///右
now.push_back(pre[l]);///根
}
int main(){
int n;
scanf("%d",&n);
for(int i = 0; i < n; ++i){
scanf("%d",&pre[i]);
}
f(0,n-1);
///第一次不成功可能因为是镜像
if(now.size()!=n){
isMirror = 1;
now.clear();
f(0,n-1);
}
///镜像还不成功就说明不是搜索二叉树
if(now.size()!=n) printf("NO");
else{
printf("YES\n%d",now[0]);
for(int i = 1; i < n; ++i){
printf(" %d",now[i]);
}
}
return 0;
}