题目描述:统计一个数字在排序数组中出现的次数。(知识迁移能力,二分查找的一个应用)
思路:因为是排序数组,自然联想到二分查找算法,这样我们在二分的时候可能会获取多个相同的数字。就是说,中间那个位置的值可能刚好是统计的那个值,假设为k。那么k还有可能在前面或者后面出现,在这个基础上继续二分当然也是可以的,如果能够在使用二分查找算法的时候统计出第一个k和最后一个k出现的位置,那么k出现的次数自然就确定了。第一个k出现的位置,可以使用二分查找算法,如果中间位置的值刚好是k,那么继续比较中间位置前面位置的值是不是也是k,如果不是那么该中间位置就是第一个k出现的位置,如果中间位置的前一个位置的值也是k,那么说明第一个k肯定出现在前半部分,继续二分即可。那么寻找最后一个k出现的位置也是一样的道理,比较中间位置后面一个位置的值是不是也是k,如果是说明最后一个k肯定出现在后半部分,继续二分即可,如果不是k的话,那么中间位置就是最后一个k出现的位置了,因为是排序数组,那么后面一个位置的值如果都不是k的话,其他位置更加不可能是k了。排序数组是一个关键。
public class GetCountOfK {
public int GetNumberOfK(int[] array, int k) {
if (array == null || array.length <= 0)
return 0;
int count = 0;
int firstIndexOfK = getFirstK(array, k, 0, array.length - 1);
int lastIndexOfK = getLastK(array, k, 0, array.length - 1);
if (firstIndexOfK >= 0 && lastIndexOfK >= 0)
count = lastIndexOfK - firstIndexOfK + 1;
return count;
}
private int getLastK(int[] array, int k, int start, int end) {
if (start > end) return -1;
int middleIndex = (start + end) / 2;
int middleData = array[middleIndex];
if (middleData == k) {
if ((middleIndex < array.length - 1 && array[middleIndex + 1] != k)
|| middleIndex == array.length - 1) {
return middleIndex;
} else {
start = middleIndex + 1;
}
} else if (middleData > k) {
end = middleIndex - 1;
} else {
start = middleIndex + 1;
}
return getLastK(array, k, start, end);
}
private int getFirstK(int[] array, int k, int start, int end) {
if (start > end) return -1;
int middleIndex = (start + end) / 2;
int middleData = array[middleIndex];
if (middleData == k) {
if ((middleIndex > 0 && array[middleIndex - 1] != k)
|| middleIndex == 0) {
return middleIndex;
} else {
end = middleIndex - 1;
}
} else if (middleData > k) {
end = middleIndex - 1;
} else {
start = middleIndex + 1;
}
return getFirstK(array, k, start, end);
}
}