理解红黑树

4 篇文章 0 订阅

1. 二叉树

        二叉树(binary tree)是指树中节点的度不大于2的有序树,它是一种最简单且最重要的树。二叉树的递归定义为:二叉树是一棵空树,或者是一棵由一个根节点和两棵互不相交的,分别称作根的左子树和右子树组成的非空树;左子树和右子树又同样都是二叉树

        即二叉树满足以下两个条件:

        1) 本身是有序树(若将树中每个结点的各子树看成是从左到右有次序的(即不能互换),则称该树为有序树(Ordered Tree))。

        2) 树中包含的各个节点的度不能超过 2,即只能是 01 或者 2

 2.二叉查找树 

        二叉排序树(Binary Sort Tree),又称二叉查找树(Binary Search Tree),亦称二叉搜索树。是数据结构中的一类。在一般情况下,查询效率比链表结构要高。

        一棵空树,或者是具有下列性质的二叉树

        若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;若任意节点的右子树不空,则右子树上所有节点的值均大于或等于它的根节点的值;任意节点的左、右子树也分别为二叉查找树。

        查找:步骤:若根结点的关键字值等于查找的关键字,成功。否则,若小于根结点的关键字值,递归查左子树。若大于根结点的关键字值,递归查右子树。若子树为空,查找不成功。

3.平衡树

        平衡树(Balance TreeBT) 指的是,任意节点的子树的高度差都小于等于1。常见的符合平衡树的有,B树(多路平衡搜索树)、AVL树(二叉平衡搜索树)等。

4.AVL 树

        AVL树是自平衡二叉查找树。在AVL树中任何节点的两个子树的高度最大差别为1,所以它也被称为高度平衡树。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。

        AVL树本质上还是一棵二叉搜索树,它的特点是:

        1) 本身首先是一棵二叉搜索树。

        2) 带有平衡条件:每个结点的左右子树的高度之差的绝对值(平衡因子)最多为1。

也就是说,AVL树,本质上是带了平衡功能的二叉查找树(二叉排序树,二叉搜索树)。

AVL 树会对不符合高度差的结构进行调整,从而使得二叉树趋向平衡。

5.B 树

        B 树,表示的是一类树,它允许一个节点可以有多于两个子节点,同时,也是自平衡的,叶子节点的高度都是相同的。

        所以,为了更好地区分一颗 B 树到底属于哪一类树,我们给它一个新的属性:度(Degree):一个节点能有多少箭头指向其他节点。

        具有度为 3 的 B 树,表示一个节点最多有三个子节点,也就是 2-3 树的定义。具有度为 4 的 B 树,表示一个节点最多有四个子节点,也就是 2-3-4 树的定义。

6.红黑树

        R-B Tree,全称是Red-Black Tree,又称为“红黑树”,它一种特殊的二叉查找树。红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black)。

        红黑树的特性:
        (1)每个节点或者是黑色,或者是红色。
        (2)根节点是黑色。
        (3)每个叶子节点(NIL)是黑色。 [注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点!]
        (4)如果一个节点是红色的,则它的子节点必须是黑色的。
        (5)从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。

注意:
1)特性(3)中的叶子节点,是只为空(NILnull)的节点。

2)特性(5),确保没有一条路径会比其他路径长出俩倍。因而,红黑树是相对是接近平衡的二叉树。

        红黑树的基本操作是添加删除。在对红黑树进行添加或删除之后,都会用到旋转方法。为什么呢?道理很简单,添加或删除红黑树中的节点之后,红黑树就发生了变化,可能不满足红黑树的5条性质,也就不再是一颗红黑树了,而是一颗普通的树。而通过旋转,可以使这颗树重新成为红黑树。简单点说,旋转的目的是让树保持红黑树的特性。
旋转包括两种:左旋 和 右旋。下面分别对它们进行介绍。

6.1 左旋

        对x进行左旋,意味着"将x变成一个左节点"。

        左旋的伪代码《算法导论》:参考上面的示意图和下面的伪代码,理解“红黑树T的节点x进行左旋”是如何进行的。

LEFT-ROTATE(T, x)  
  y ← right[x]            // 前提:这里假设x的右孩子为y。下面开始正式操作
  right[x] ← left[y]      // 将 “y的左孩子” 设为 “x的右孩子”,即 将β设为x的右孩子
  p[left[y]] ← x          // 将 “x” 设为 “y的左孩子的父亲”,即 将β的父亲设为x
  p[y] ← p[x]             // 将 “x的父亲” 设为 “y的父亲”
  if p[x] = nil[T]       
  then root[T] ← y                 // 情况1:如果 “x的父亲” 是空节点,则将y设为根节点
  else if x = left[p[x]]  
            then left[p[x]] ← y    // 情况2:如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
            else right[p[x]] ← y   // 情况3:(x是它父节点的右孩子) 将y设为“x的父节点的右孩子”
  left[y] ← x             // 将 “x” 设为 “y的左孩子”
  p[x] ← y                // 将 “x的父节点” 设为 “y”

 

 6. 2. 右旋

        对y进行左旋,意味着"将y变成一个右节点"。
        右旋的伪代码《算法导论》:参考上面的示意图和下面的伪代码,理解“红黑树T的节点y进行右旋”是如何进行的。 

RIGHT-ROTATE(T, y)  
  x ← left[y]             // 前提:这里假设y的左孩子为x。下面开始正式操作
  left[y] ← right[x]      // 将 “x的右孩子” 设为 “y的左孩子”,即 将β设为y的左孩子
  p[right[x]] ← y         // 将 “y” 设为 “x的右孩子的父亲”,即 将β的父亲设为y
  p[x] ← p[y]             // 将 “y的父亲” 设为 “x的父亲”
  if p[y] = nil[T]       
  then root[T] ← x                 // 情况1:如果 “y的父亲” 是空节点,则将x设为根节点
  else if y = right[p[y]]  
            then right[p[y]] ← x   // 情况2:如果 y是它父节点的右孩子,则将x设为“y的父节点的左孩子”
            else left[p[y]] ← x    // 情况3:(y是它父节点的左孩子) 将x设为“y的父节点的左孩子”
  right[x] ← y            // 将 “y” 设为 “x的右孩子”
  p[y] ← x                // 将 “y的父节点” 设为 “x”

 

 

6.3区分 左旋 和 右旋

        仔细观察上面"左旋"和"右旋"的示意图。我们能清晰的发现,它们是对称的。无论是左旋还是右旋,被旋转的树,在旋转前是二叉查找树,并且旋转之后仍然是一颗二叉查找树。

左旋示例图(以x为节点进行左旋):

 

 

        对x进行左旋,意味着,将“x的右孩子”设为“x的父亲节点”;即,将 x变成了一个左节点(x成了为z的左孩子)!。 因此,左旋中的“左”,意味着“被旋转的节点将变成一个左节点”

        右旋示例图(以x为节点进行右旋):

        对x进行右旋,意味着,将“x的左孩子”设为“x的父亲节点”;即,将 x变成了一个右节点(x成了为y的右孩子)! 因此,右旋中的“右”,意味着“被旋转的节点将变成一个右节点”

        将一个节点插入到红黑树中,需要执行哪些步骤呢?首先,将红黑树当作一颗二叉查找树,将节点插入;然后,将节点着色为红色;最后,通过旋转和重新着色等方法来修正该树,使之重新成为一颗红黑树。详细描述如下:

  1. 将红黑树当作一颗二叉查找树,将节点插入。

        红黑树本身就是一颗二叉查找树,将节点插入后,该树仍然是一颗二叉查找树。也就意味着,树的键值仍然是有序的。此外,无论是左旋还是右旋,若旋转之前这棵树是二叉查找树,旋转之后它一定还是二叉查找树。这也就意味着,任何的旋转和重新着色操作,都不会改变它仍然是一颗二叉查找树的事实。

  1. 将插入的节点着色为"红色"

        为什么着色成红色,而不是黑色呢?为什么呢?在回答之前,我们需要重新温习一下红黑树的特性:
        (1) 每个节点或者是黑色,或者是红色。
        (2) 根节点是黑色。
        (3) 每个叶子节点是黑色。 [注意:这里叶子节点,是指为空的叶子节点!]
        (4) 如果一个节点是红色的,则它的子节点必须是黑色的。
        (5) 从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。
       将插入的节点着色为红色,不会违背"特性(5)"!少违背一条特性,就意味着我们需要处理的情况越少。接下来,就要努力的让这棵树满足其它性质即可;满足了的话,它就又是一颗红黑树了

  1. 通过一系列的旋转或着色等操作,使之重新成为一颗红黑树。

        将插入节点着色为"红色"之后,不会违背"特性(5)"。那它到底会违背哪些特性呢?
        对于"特性(1)",显然不会违背了。因为我们已经将它涂成红色了。
        对于"特性(2)",显然也不会违背。在第一步中,我们是将红黑树当作二叉查找树,然后执行的插入操作。而根据二叉查找数的特点,插入操作不会改变根节点。所以,根节点仍然是黑色。
       对于"特性(3)",显然不会违背了。这里的叶子节点是指的空叶子节点,插入非空节点并不会对它们造成影响。
       对于"特性(4)",是有可能违背的!
       那接下来,想办法使之"满足特性(4)",就可以将树重新构造成红黑树了。

 参考文献:

《红黑树(一)之 原理和算法详细介绍》

 《从根源上探究红黑树的本质》

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值