从两个数据角度来看全国复工情况

时间已经来到三月份,随着疫情形势不断出现积极变化,全国各地复工复产的脚步已悄悄加快。那么目前的复工情况如何呢?我找到了清华大学信息技术研究院“智库2861”项目组研发的AI大数据平台——DaaS实时数据库,本文的所有数据均来源于该数据库。

DaaS实时数据库平台由我国全域网格(即划分到每1平方公里共计960万个空间网格)2.2亿个采集点实时产生的互联网活动信息数据库,辅以三千多个分类数据库共同构成,分级对应我国2861个行政区县以及336个地市和31个省、自治区、直辖市经济社会运行情况,通过不断增加校验的AI算法产生客观、实时、冷静的社会心跳数据。

该平台通过AI技术测算了新型冠状病毒疫情防控期间的商办区人口活跃度务工人员返工率这两项数据,用以致力助力各地分区分级精准复工复产研究参考。

我爬取了该平台的数据,并做了一定的可视化。

import requests
import re
import json
from pymongo import MongoClient



# 数据爬取
db=MongoClient().work
url='https://sp.uidashi.com/app.32615eee.js'
headers={
        'Referer': 'https://rw.uidashi.com/?from=singlemessage',
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36'
}
r=requests.get(url,headers=headers)
r.encoding=r.apparent_encoding

data=re.findall("JSON.parse\('(.*?)'\)",r.text)
city1=json.loads(data[0])['city']
city2=json.loads(data[1])['city']




# 存入MongoDB,方式一
# 用于pyecharts绘图
for city in city1:
    name=city['name']
    values=city['values']
    item={
            'name':name,
            'values':values[-1]
            }
    db['town'].insert_one(item)
for city in city2:
    name=city['name']
    values=city['values']
    item={
            'name':name,
            'values':values[-1]
            }
    db['city'].insert_one(item) 


# 存入MongoDB,方式二
# 存入多行数据用于绘制js动态图
    
for city in city1:
    name=city['name']
    values=city['values']
    periods=city['periods']
    for i in range(len(values)):
        item={
            'type':name[:2],
            'name':name,
            'value':values[i],
            'date':periods[i],
            
            }
        db['town2'].insert_one(item)
for city in city2:
    name=city['name']
    values=city['values']
    periods=city['periods']
    for i in range(len(values)):
        item={
            'type':'中国',
            'name':name,
            'value':values[i],
            'date':periods[i],

            }
        db['city2'].insert_one(item)

商办区人口活跃度

监测样本城市排名前10位的商业和办公区域所在1平方公里网格的人口数据,与疫情前进行对比,以此反映人口活跃恢复程度的百分比。

file

上图给出了全国主要城市的商办区人口活跃度,基本上这些城市都有了一定的活跃度,但都不高,武汉的商办区人口活跃度是最低的仅为13.92%,而拉萨的商办区人口活跃度最高,达到65.91%,该项数据与城市受疫情影响的相关程度较高,受疫情影响越大的城市商办区人口活跃度越低,反之则越高,这是非常容易理解且符合客观规律的。

file

除了拉萨相对较高的商办区人口活跃度,其他九个城市的活跃度都只是略高于50%。

file

上图是全国商办区人口活跃度的趋势,从此折线图中我们可以看到目前复工正在积极进行,且目前整个国家商办区的人口活跃度已超过50%,是一个不错的信号。

务工人员返工率

测算务工人员返工率的重点是计算外出务工人员新年返乡人口数量和年后离乡返回就业地区的人口数量。

此数据能够反映出劳动力输出区县农民工离乡返回就业地区的情况,在一定程度上可以反映出制造业的复工情况。下图是主要劳务输出区县的离乡返工率变化情况,目前新疆伊犁州霍城县以**81.55%**的离乡返工率占据榜首。

在这里插入图片描述

除了新疆,广西、四川等几个省份的务工人员返工率也较高。

file

从此折线图中我们同样可以看到目前复工正在积极进行,且目前整个国家的务工人员返工率已接近70%,同样是一个不错的信号。

春天到来,一波又一波返工的浪潮已经涌来。那么,开学还会远吗?

file

最后,可视化的代码可以去我的GitHub上查看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值