每日一题(十二):最大公约数,最小公倍数

求a、b两个正整数的最大公约数,通过欧几里得算法,可以改变朴素的枚举法需要“暴力”遍历所有数字的情况,而改为利用数学原理巧妙地将问题转化为规模更小的问题,从而得出最后答案。

欧几里得算法的核心思想是把求a、b的最大公约数转换成求b、a mod b的最大公约数,不断重复该过程直到问题缩小成为某个非零数和零的最大公约数。

// 递归
#include<stdio.h>

int gcd(int a, int b) {
	if (b == 0)
		return a;     //若b为0,则a为ab的最大公约数
	else return gcd(b, a%b);   //否则,改为求a与a%b的最大公约数
}


int main() {
	int a, b;
	while (scanf("%d%d", &a, &b)!=EOF) {
		printf("%d\n", gcd(a, b));
	}
	return 0;
}
//非递归
#include<stdio.h>

int gcd(int a, int b) {
	while (b != 0) {   //只要b不为0,一直持续该过程
		int t = a%b;
		a = b;         //a变为b
		b = t;         //当b为0时,a即为所求
	}
	return a;
}


int main() {
	int a, b;
	while (scanf("%d%d", &a, &b)!=EOF) {
		printf("%d\n", gcd(a, b));
	}
	return 0;
}

最小公倍数(LCM)

#include<stdio.h>

int gcd(int a, int b) {
	return b != 0 ? gcd(b, a%b) : a;
}


int main() {
	int a, b;
	while (scanf("%d%d", &a, &b)!=EOF) {
		printf("%d\n", a*b/gcd(a, b));
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值