第一瞬间以为是网络流,看完数据范围果断弃疗。但是考虑到这个有点像对偶图转最长路。。就是求一条从左下到右上的最长路径,大概可以证明这就是最少的次数。简单的证明如下:
1.必要性。显然成立,这几个点之间不能互相到达,至少需要走这几个点才能全部取完。
2.充分性。反证法,假设有几个点没有被取完。那么对于每一个点,以这个点为右下角的一个矩形中所有最长路径上的点,他们走的路径都已经满了(语文不好只能这样表达了),否则肯定可以走下来。那么吧这个点加入最长路径,加上这个点左上角走下来碰到的一下点,是更长的路径。只能大概这么表达一下了,讲不清楚啊。
或者直接用网络流解释,这道题目就是给出流量下界求最小流,那么对应的就是最大割了。
AC代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#define N 2005
using namespace std;
int n,m,a[N][N],f[N][N];
int read(){
int x=0; char ch=getchar();
while (ch<'0' || ch>'9') ch=getchar();
while (ch>='0' && ch<='9'){ x=x*10+ch-'0'; ch=getchar(); }
return x;
}
int main(){
int cas=read();
while (cas--){
m=read(); n=read(); int i,j;
for (i=1; i<=m; i++)
for (j=1; j<=n; j++) a[i][j]=read();
memset(f,0,sizeof(f));
for (i=m; i; i--)
for (j=1; j<=n; j++) f[i][j]=max(max(f[i][j-1],f[i+1][j]),f[i+1][j-1]+a[i][j]);
printf("%d\n",f[1][n]);
}
return 0;
}
by lych
2015.12.11