bzoj3875 骑士游戏 最短路

       以前看到过类似的最短路,就是已知一个集合(称为S),在这个集合全部得到后经过t的时间可以得到另一个集合(称为T),求从一个物品得到另外一个物品的最短时间。不妨先看一下这个类似的问题:

       在这个问题中,用bellman-ford,看S能否更新T中的某一个,直到不能更新就终止。

       那么同样在这个问题中,首先定义d[i]的初值为法术杀死i的时间,d[i]的终值为杀死i(及其产生的新怪物)的最快时间。那么如果所有i的前驱(杀死i产生的新怪物)的和<d[i],就更新i,然后更新所有i的后驱(杀死它后会产生i的怪物),将所有的后驱加入队列(没错就是一个spfa)。

       然后就好了。

AC代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#define N 200005
#define M 1000005
#define ll long long
using namespace std;

int n,tot,fst[N],pnt[M],nxt[M],h[M+5]; bool bo[N];
ll a[N],d[N],sum[N];
int read(){
	int x=0; char ch=getchar();
	while (ch<'0' || ch>'9') ch=getchar();
	while (ch>='0' && ch<='9'){ x=x*10+ch-'0'; ch=getchar(); }
	return x;
}
void add(int x,int y){
	pnt[++tot]=y; nxt[tot]=fst[x]; fst[x]=tot;
}
int main(){
	n=read(); int i;
	for (i=1; i<=n; i++){
		scanf("%lld%lld",&a[i],&d[i]); int cnt=read();
		while (cnt--){
			int x=read(); add(x,i);
		}
	}
	int head=0,tail=n;
	for (i=1; i<=n; i++){
		h[i]=i; int p;
		for (p=fst[i]; p; p=nxt[p]) sum[pnt[p]]+=d[i];
	}
	while (head!=tail){
		head=head%M+1;
		int x=h[head]; ll tmp=sum[x]+a[x]-d[x]; bo[x]=1;
		if (tmp<0){
			d[x]+=tmp; int p;
			for (p=fst[x]; p; p=nxt[p]){
				int y=pnt[p]; sum[y]+=tmp;
				if (bo[y]){ bo[y]=0; tail=tail%M+1; h[tail]=y; }
			}
		}
	}
	printf("%lld\n",d[1]);
	return 0;
}


by lych

2016.3.8

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值