bzoj3924 幻想乡战略游戏 树链剖分&分治树

版权声明:转载请注明:http://blog.csdn.net/lych_cys https://blog.csdn.net/lych_cys/article/details/50878841

       (对于和我一样没有权限的穷孩子,可以点这里提交)

       一句话题意:维护带修改的带权重心到其余点的带权距离和。

       首先看怎么求出带权重心。假设现在考虑一个点x,我们维护一个值f[x]表示x所在子树所有节点的权值和。那么如果存在一个点y,y是x的一个子节点,使得f[y]*2>树种所有点的权值和(显然反证易得这样的y只有一个),那么y一定比x更优;反之x比y更优。

       那么就从根节点出发不断找y,然后向下走即可。但是这样可能会走很多步。因此首先得到树链剖分后的dfs序,然后用线段树维护某一个区间f[]的最大值。由于显然向下走时dfs序是不断增大的,这样可以在线段树中二分的到最终的重心的dfs序。

       那么现在要求出中心到其余点的带权距离和。可以用树链剖分维护,或者用对树进行点分治之后得到的那棵树来维护。首先考虑一下朴素的做法。

       枚举重心到根节点路径上的某一个点t,显然t的子树中除了x那一部分中的点与x的lca都是t(有点拗口)。那么就可以对一个点维护子树中每个点的权值*到这个点的距离的和,再维护一个权值和,然后这一部分的答案就是权值和*d(t,x)+权值*距离的和。这样就和树的层数有关了,发现这个可以用分治树来降低层数,于是就做好了。

       时间复杂度O(Mlog^N),这个太难讲了不懂看代码把。。。

AC代码如下:

#include<iostream>
#include<cstdio>
#define N 100005
#define M 2000005
#define ll long long
using namespace std;
 
int n,m,tot=1,cnt,dfsclk,rt,all,pnt[M],nxt[M],len[M],edg[M];
int fa[N],sz[N],son[N],pos[N],anc[N],icr[N<<2],id[N],a[N],f[N];
ll val[N<<2],sum[4][M];
struct graph{
	int fst[N];
	void add(int x,int y,int z,int w){
		pnt[++tot]=y; len[tot]=z; edg[tot]=w; nxt[tot]=fst[x]; fst[x]=tot;
	}
}g1,g2;
int read(){
	int x=0,fu=1; char ch=getchar();
	while (ch<'0' || ch>'9'){ if (ch=='-') fu=-1; ch=getchar(); }
	while (ch>='0' && ch<='9'){ x=x*10+ch-'0'; ch=getchar(); }
	return x*fu;
}
void pushdown(int k){
	if (icr[k]){
		icr[k<<1]+=icr[k]; val[k<<1]+=icr[k];
		icr[k<<1|1]+=icr[k]; val[k<<1|1]+=icr[k]; icr[k]=0;
	}
}
void ins(int k,int l,int r,int x,int y,int t){
	if (l==x && r==y){ icr[k]+=t; val[k]+=t; return; }
	int mid=(l+r)>>1; pushdown(k);
	if (y<=mid) ins(k<<1,l,mid,x,y,t); else
	if (x>mid) ins(k<<1|1,mid+1,r,x,y,t); else{
		ins(k<<1,l,mid,x,mid,t); ins(k<<1|1,mid+1,r,mid+1,y,t);
	}
	val[k]=max(val[k<<1],val[k<<1|1]);
}
void dfs(int x){
	sz[x]=1; int p;
	for (p=g1.fst[x]; p; p=nxt[p]){
		int y=pnt[p];
		if (y!=fa[x]){
			fa[y]=x; dfs(y); sz[x]+=sz[y];
			if (sz[y]>sz[son[x]]) son[x]=y;
		}
	}
}
void divide(int x,int tp){
	anc[x]=tp; pos[x]=++dfsclk; id[dfsclk]=x;
	if (son[x]) divide(son[x],tp); int p;
	for (p=g1.fst[x]; p; p=nxt[p]){
		int y=pnt[p];
		if (y!=fa[x] && y!=son[x]) divide(y,y);
	}
}
void getrt(int x,int last){
	sz[x]=1; f[x]=0; int p;
	for (p=g1.fst[x]; p; p=nxt[p]) if (edg[p]){
		int y=pnt[p];
		if (y!=last){
			getrt(y,x); sz[x]+=sz[y];
			f[x]=max(f[x],sz[y]);
		}
	}
	f[x]=max(f[x],all-sz[x]); if (f[x]<f[rt]) rt=x;
}
void getedg(int x,int last,int t){
	g2.add(x,rt,t,cnt); int p;
	for (p=g1.fst[x]; p; p=nxt[p])
		if (edg[p] && pnt[p]!=last) getedg(pnt[p],x,t+len[p]);
}
void solve(int x){
	int p;
	for (p=g1.fst[x]; p; p=nxt[p]) if (edg[p]){
		cnt++; getedg(pnt[p],x,len[p]);
	}
	for (p=g1.fst[x]; p; p=nxt[p]) if (edg[p]){
		int y=pnt[p];
		edg[p^1]=0; f[0]=all=sz[y];
		rt=0; getrt(y,rt); solve(rt);
	}
}
int main(){
	//freopen("zjoi15_tree.in","r",stdin); freopen("zjoi15_tree.out","w",stdout);
	n=read(); m=read(); int i;
	for (i=1; i<n; i++){
		int x=read(),y=read(),z=read();
		g1.add(x,y,z,1); g1.add(y,x,z,1);
	}
	f[0]=all=n; getrt(1,0); solve(rt);
	dfs(1); divide(1,1);
	while (m--){
		int x=read(),y=read();
		for (i=x; i; i=fa[anc[i]]) ins(1,1,n,pos[anc[i]],pos[i],y);
		a[x]+=y;
		for (i=g2.fst[x]; i; i=nxt[i]){
			sum[0][pnt[i]]+=y; sum[1][pnt[i]]+=(ll)len[i]*y;
			sum[2][edg[i]]+=y; sum[3][edg[i]]+=(ll)len[i]*y;
		}
		int l=1,r=n,i=1,mid;
		while (l<r){
			pushdown(i); mid=(l+r)>>1;
			if ((val[i<<1|1]<<1)>=val[1]){ l=mid+1; i=i<<1|1; }
			else{ r=mid; i<<=1; }
		}
		ll ans=sum[1][id[l]];
		for (i=g2.fst[id[l]]; i; i=nxt[i]){
			x=pnt[i]; y=edg[i];
			ans+=(sum[0][x]-sum[2][y]+a[x])*len[i]+sum[1][x]-sum[3][y];
		}
		printf("%lld\n",ans);
	}
	return 0;
}


by lych

2016.3.13

阅读更多

没有更多推荐了,返回首页