给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [3,3,5,0,0,3,1,4]
输出: 6
解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这个情况下, 没有交易完成, 所以最大利润为 0。
一、思路
(一)动态规划
罗列这道题目中所有的状态:
- 天数,用i表示
- 交易次数,用k表示
- 股票持有状态,用j表示
罗列本题中,在某一天中所能进行的操作:
- buy,购买股票
- sell,出售股票
- rest,保持原来的持股状态
注意,部分操作是有条件的,buy操作只能在未持股的条件下进行,sell操作只能在持股条件下进行
1、状态转移框架
建立状态转移表
d
p
[
i
]
[
k
]
[
j
]
dp[i][k][j]
dp[i][k][j]
- i:表示第i天
- k:表示当前已经交易过k次了
- j:表示持有股票的状态
所以我们需要计算的答案是: d p [ n − 1 ] [ 2 ] [ 0 ] dp[n - 1][2][0] dp[n−1][2][0]
2、状态转移方程
(1)状态转移方程
-
d
p
[
i
]
[
k
]
[
0
]
=
m
a
x
(
d
p
[
i
−
1
]
[
k
]
[
0
]
,
d
p
[
i
−
1
]
[
k
]
[
1
]
+
p
r
i
c
e
s
[
i
]
)
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][0]=max(dp[i−1][k][0],dp[i−1][k][1]+prices[i])
d p [ i ] [ k ] [ 0 ] dp[i][k][0] dp[i][k][0]表示:在第i天,已经交易过k次,未持股状态下,所能得到的最大利润
那么这个状态(i,k,0)是怎么得出来的呢?
从持股状态分析:
(1)要么昨天也没有持股,并且执行rest操作;
(2)要么昨天持有股票,执行sell操作,交易包括buy与sell,这里只在buy的时候计入交易次数。 -
d
p
[
i
]
[
k
]
[
1
]
=
m
a
x
(
d
p
[
i
−
1
]
[
k
]
[
1
]
,
d
p
[
i
−
1
]
[
k
−
1
]
[
0
]
−
p
r
i
c
e
s
[
i
]
)
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
dp[i][k][1]=max(dp[i−1][k][1],dp[i−1][k−1][0]−prices[i])
d p [ i ] [ k ] [ 1 ] dp[i][k][1] dp[i][k][1]表示:在第i天,已经交易过k次,持股状态下,所能得到的最大利润
那么这个状态(i,k,1)是怎么得出来的呢?
从持股状态分析:
(1)要么昨天也持股,并且执行rest操作;
(2)要么昨天未持股,执行buy操作,交易包括buy与sell,这里只在buy的时候计入交易次数。
(2)如何初始化
第0天的状态:
- 从天数上看,第0天之前,我们认为利润为0,不持股,只有一种状态,即: d p [ − 1 ] = 0 , p r i c e s [ − 1 ] = 0 dp[-1] = 0, prices[-1] = 0 dp[−1]=0,prices[−1]=0
- 从交易次数上看,显然是0次,注意:这里的k表示之前交易的次数,如果今天发生交易,不会计算在内
- 从持股状态上看:要么持股(今天购买,不计入今天的交易次数);要么不持股
- 从操作上看:要么rest;要么buy(不可能sell)。
请注意持股状态直接受操作的影响
因为第-1天的状态只有一个,可执行的操作只有2个,因此得第0天状态只有2个。
但是第0天之前真的不能发生交易吗?
我们可以假设,能发生交易,买了之后马上卖掉,利润为0,就当损失了一次交易机会。
根据上述分析,我们知道如下信息:
dp[0][0][0] = 0
dp[0][1][0] = 0
dp[0][2][0] = 0
dp[0][0][1] = -prices[0]
dp[0][1][1] = -prices[0]
dp[0][2][1] = -prices[0]
C++代码:
class Solution {
public:
int maxProfit(vector<int>& prices) {
if(prices.size() == 0 || prices.size() == 1)
return 0;
vector<vector<vector<int>>> dp(prices.size(), vector<vector<int>>(3, vector<int>(2, 0)));
// 第0天的初始化
dp[0][0][0] = 0;
dp[0][0][1] = -prices[0];
dp[0][1][0] = 0;
dp[0][1][1] = -prices[0];
dp[0][2][0] = 0;
dp[0][2][1] = -prices[0];
for(int i=1; i < prices.size(); i++){
dp[i][0][0] = dp[i - 1][0][0];
dp[i][0][1] = dp[i - 1][0][1];
dp[i][1][0] = max(dp[i - 1][1][1] + prices[i], dp[i - 1][1][0]);
dp[i][1][1] = max(dp[i - 1][0][0] - prices[i], dp[i - 1][1][1]);
dp[i][2][0] = max(dp[i - 1][2][1] + prices[i], dp[i - 1][2][0]);
dp[i][2][1] = max(dp[i - 1][1][0] - prices[i], dp[i - 1][2][1]);
}
return dp[prices.size() - 1][2][0];
}
};