运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。
获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。
写入数据 put(key, value) - 如果密钥不存在,则写入其数据值。当缓存容量达到上限时,它应该在写入新数据之前删除最近最少使用的数据值,从而为新的数据值留出空间。
进阶:
你是否可以在 O(1) 时间复杂度内完成这两种操作?
示例:
LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // 返回 1
cache.put(3, 3); // 该操作会使得密钥 2 作废
cache.get(2); // 返回 -1 (未找到)
cache.put(4, 4); // 该操作会使得密钥 1 作废
cache.get(1); // 返回 -1 (未找到)
cache.get(3); // 返回 3
cache.get(4); // 返回 4
一、思路
总的来说,借鉴了插入排序的思想:
- 每次put一个密匙时,都要对列表进行查找,看是否存在该密匙,存在则删除该密匙,然后将新的密匙插入到向量末尾。
- 若不存在,则看看当前缓存是否达到上限,若已经达到上限,则删除向量中第一个元素;否则直接在向量末尾进行插入即可。
C++代码:
struct node {
long time;
int key, value;
};
bool cmp(const node n1, const node n2) {
return n1.time > n2.time;
}
class LRUCache {
public:
LRUCache(int capacity) {
_capacity = capacity;
_time = 0;
}
int get(int key) {
for (int i = 0; i < table.size(); i++) {
if (table[i].key == key) {
node temp;
temp.key = table[i].key;
temp.value = table[i].value;
temp.time = ++_time;
table.erase(table.begin() + i, table.begin() + i + 1);
table.push_back(temp);
return temp.value;
}
}
return -1;
}
void put(int key, int value) {
node temp;
temp.key = key;
temp.value = value;
temp.time = ++_time;
for (int i = 0; i < table.size(); i++) {
if (table[i].key == key) {
table.erase(table.begin() + i, table.begin() + i + 1);
table.push_back(temp);
return;
}
}
int cur_capacity = table.size();
if (cur_capacity == _capacity) {
table.erase(table.begin(), table.begin() + 1);
table.push_back(temp);
}
else {
table.push_back(temp);
}
}
private:
vector<node> table;
int _capacity;
long _time;
};