初识Hadoop

一、什么是大数据?

       四V:Volume(大量) ,Velocity(高速),Variety(多样),Value(价值)

二、大数据的挑战

        1.大数据的分析:数据处理要求实时性。

        2.大数据集成:数据存在广泛的异构性,数据质量不高。

        3.大数据管理应用问题:大数据处理得到的结果可能多样化,应用者对大数据工具的了解限制了其从中获取知

                                                识的能力。

        4.大数据处理与硬件的协同:硬件异构性带来大数据处理的难题。新硬件给大数据处理大量变革。

        5.大数据能耗问题:采用新型低功能耗硬件;引入可再生新能源。

        6.大数据隐私问题:隐性的数据暴露,一个人多点独立行为数据汇集,造成隐私暴露;数据公开与隐私保护的

                                        矛盾。

三、Google三篇论文

        1.  GFS 是一个可扩展的分布式文件系统,用于大型的、分布式的、对大量数据进行访问的应用。它运行于廉

             价的普通硬件上,提供容错功能。

        2.  MapReduce是针对分布式并行计算的一套编程模型。

        3.  BigTable 分布式表格系统,就像文件系统需要数据库来存储结构化数据一样,GFS也需要Bigtable来存储             结构化数据。

 四、Google与开源项目

         GFS -------->  HDFS

         MapReduce---------> MapReduce

         BigTable------------->Hbase   


五、什么是hadoop?

       1. Hadoop是apache旗下的一套开源软件平台。

       2. Hadoop适合应用于大数据存储和大数据分析的应用,适合于服务器几千台到几万台的集群运行,支持PB级 

           的存储容量。

       3.Hadoop提供的功能:利用服务器集群,根据用户的自定义业务逻辑,对海量数据进行分布式处理。

       4.Hadoop典型应用有:搜索、日志处理、推荐系统、数据分析、视频图像分析、数据保存等。

       

      5.Hadoop核心四大组件:

        a.Common(基础组件)

        b.HDFS(分布式文件系统)

        c.YARN(运算资源调度系统) 

        d.MAPREDUCE(分布式运算编程框架)

      6.广义上来说,HADOOP通常是指一个更广泛的概念——HADOOP生态圈

          


               

                         

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值