自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(38)
  • 收藏
  • 关注

原创 【C++ 避坑指南】string::npos 到底是什么?90% 的新手都踩过的坑

摘要:C++中string::npos常被误认为是-1,实际上它是size_t类型的无符号最大值。文章指出新手常见错误是使用pos==-1判断查找失败,这种写法虽在32位系统可能工作,但在64位系统会导致bug。正确做法是使用pos==string::npos,因为:1)符合C++标准;2)避免类型转换问题;3)适用于所有查找函数。关键点包括:npos本质是无符号最大值,接收返回值应用size_t类型,且必须使用string::npos而非直接写npos。规范写法能确保代码在不同平台和编译器下的正确性。

2026-02-11 11:07:34 650

原创 【C++ 必懂细节】string::c_str () 核心用法解析:打通 C 字符串与 C++ string 的桥梁

本文详细解析了C++中c_str()函数的作用与使用方法。作为连接C++字符串与C风格字符数组的桥梁,c_str()可将std::string转换为带\0结束符的字符数组指针,使其兼容printf等C语言函数。文章通过典型错误示例、规范用法和实战场景演示其正确使用方式,并重点指出三大常见坑点:禁止修改返回值、注意生命周期关联及自动添加的结束符。最后对比了C++11新增的data()函数,强调在调用C语言函数时必须使用c_str()转换并始终用const char*接收返回值,以确保代码健壮性。

2026-02-10 09:49:22 1004

原创 C++语法中的#include<iostream>

摘要:#include<iostream>是C++中用于实现输入输出功能的核心预处理指令。它引入标准输入输出流库,使程序能够使用cout(输出)、cin(输入)等基本交互功能。该指令包含三部分:#表示预处理、include表示包含文件、<iostream>是输入输出流头文件。若未包含该指令,使用cout/cin会报错。与C语言的#include<stdio.h>不同,C++采用无.h后缀的标准写法。通常配合using namespace std使用,可省略std::前缀。

2026-02-10 09:48:39 675

原创 C++ 中 std::string(字符串类) 的最基础用法

本文介绍了C++中std::string的基本用法。string是C++标准库中的字符串类,比C语言的char数组更安全方便。通过示例string a="12345.6789"说明:1) string是动态对象,自动管理内存;2) 双引号内的内容都作为字符存储;3) 与char数组和普通变量的区别。文章还展示了字符串拼接、获取长度和比较等常用操作,强调string支持直接运算,比char数组更易用。使用string需包含<string>头文件。

2026-02-09 21:45:34 371

原创 C++(兼容 C 语言) 的标准输入语法,用来读取一行文本

这段代码实现了从键盘读取一行文本的功能。首先定义了一个200字符的数组arr并初始化为0,确保字符串正确终止。使用fgets()函数从stdin读取输入,最多读取199个字符或遇到换行符停止,会保留换行符\n并自动添加终止符\0。使用时需要注意:1)包含<stdio.h>头文件;2)不要使用不安全的gets();3)如需去除换行符可手动替换。这是读取含空格文本的标准安全方法,适用于需要处理整行输入的编程场景。

2026-02-09 11:05:27 557

原创 一文读懂RNN:循环神经网络核心原理与实战指南

本文全面介绍了循环神经网络(RNN)的核心原理与应用。作为首个具备记忆能力的时序深度学习模型,RNN通过循环结构和隐状态传递实现了对序列数据上下文关联的捕捉,成为文本生成、语音识别等时序任务的早期解决方案。文章详细解析了RNN的结构特点、三种经典变体及其适用场景,重点分析了RNN在参数效率高、适配时序任务方面的优势,以及梯度消失/爆炸等固有缺陷。同时探讨了RNN的技术演进路径,包括LSTM、GRU等改进模型,并给出了RNN的实操选型建议。尽管在长序列任务中逐渐被替代,RNN仍是理解时序模型发展脉络的重要基础

2026-02-07 09:36:27 1077

原创 using namespace std

摘要:using namespace std;是C++特有的语法,用于简化标准库函数(如cout、cin)的调用,避免每次使用都要加std::前缀。C语言不支持命名空间概念,标准函数(如printf、scanf)直接全局可用,添加该语句会导致编译错误。关键区别:C++输出用cout(需std::或using声明),C语言用printf(无需命名空间)。解决方法是删除C代码中的该语句,并确保使用正确的头文件和函数。

2026-02-06 08:55:28 231

原创 代码 import torch.nn as nn 极简入门版

PyTorch神经网络搭建的"标配开头":import torch.nn as nn,这是导入神经网络工具包并设置别名nn的常规操作。就像做饭前拿出"厨具套装"并简称为"厨具"一样,这个导入让我们能方便地调用全连接层(nn.Linear)、卷积层(nn.Conv2d)、损失函数(nn.CrossEntropyLoss)等核心组件。通过简化名称,后续代码书写更简洁,是搭建AI模型的必备第一步。

2026-02-06 08:54:43 521

原创 新手必懂:main函数中return 0; 真的是多此一举吗?

摘要:本文解释了C/C++中main函数返回0的意义,指出return 0是向操作系统返回"退出码",表示程序正常执行完毕。通过批量运行、程序调用、后台运行等实际场景说明其必要性,并给出Windows和Linux验证方法。文章还纠正了"自动补0"、"所有return都相同"等常见误区,强调养成显式写return 0的好习惯。新手只需记住:return 0是给操作系统而非人看的,是实现自动化运行的关键机制。

2026-02-05 09:22:21 1548

原创 ViLBERT 通俗讲解:让 AI“看懂图 + 读懂话” 的多模态模型

ViLBERT是BERT的多模态扩展模型,能够同时处理视觉和语言信息。其创新点在于采用跨模态注意力机制,让图像区域和文字单词在编码过程中实时交互,而非简单拼接。通过多层Transformer编码深度融合图文信息,ViLBERT在视觉问答、图文检索等任务中表现优异。相比传统模型,它能建立更紧密的图文关联,但计算量较大。该模型为多模态任务提供了"看图读题"的协同理解能力,实现了视觉与语言的高效联合表征。

2026-02-04 08:35:06 511

原创 【避坑指南】VS 多项目开发:不用设启动项目,也能精准运行指定代码

摘要:本文针对C语言新手在Visual Studio中遇到的多项目运行问题,提供了3种解决方案。核心问题是VS默认运行第一个创建的项目,而非当前编辑的项目。最佳方案是右键目标项目选择"临时启动",无需修改全局设置;也可直接运行生成的.exe文件;或长期设置默认启动项目。关键技巧是操作项目文件夹而非单个文件,避免依赖"调试"菜单。掌握这些方法可灵活运行指定项目,提升开发效率。(149字)

2026-02-04 08:34:29 491

原创 小白怒问:反射突破编译期检查,不就是晚报错吗?看完 RPC 场景秒懂

本文通过通俗易懂的类比,讲解了Java反射机制中"突破编译期检查"的核心特性。文章以餐厅点餐为例,对比了普通代码和框架代码的不同需求:普通业务代码需要编译期检查保证稳定性,而RPC/Spring等框架则必须突破编译期检查才能实现动态调用。通过极简的5行反射代码示例,详细拆解了反射的四个核心步骤:找类→创建对象→找方法→调用方法。最后指出框架通过"提前校验"和"异常兜底"两种方式规避了反射的"晚报错"风险,强调反射的灵活性是框架设

2026-02-03 10:14:47 795

原创 PyTorch Dataset & DataLoader 超详细解析(附 NLP 实战案例,新手秒懂)

本文详细解析PyTorch中Dataset和DataLoader的核心作用与使用方法。Dataset作为数据"整理员",通过实现__init__、__getitem__和__len__方法封装原始数据;DataLoader作为"分发员",负责批量加载、打乱顺序和多进程处理。文章以酒店评论情感分类为例,提供自定义Dataset模板和DataLoader参数详解,并针对常见问题给出解决方案,如标签类型转换、批次大小调整等。掌握这两个组件的协作流程,能高效处理各类深度学习任

2026-02-02 08:19:22 1122

原创 小白必懂!用「公司部门」讲透 RPC 微服务项目,全程大白话

本文通过公司部门协作的类比,通俗易懂地解释了RPC微服务项目的核心概念和应用场景。文章首先以电商系统为例,说明微服务拆分后需要解决的服务间通信问题,引出RPC技术的高效优势。然后采用"公司部门"类比的方式,将技术术语转化为日常场景:微服务对应独立部门,RPC相当于内部电话,服务发现类比公司通讯录等。详细阐述了RPC调用的完整流程,包括服务注册、发现、调用和稳定性保障措施。最后对比了RPC与HTTP的区别,强调RPC在传输效率、开发便捷性和系统稳定性方面的优势,并提供了面试常见问题的通俗解

2026-02-02 08:18:30 543

原创 小白必看!虚拟内存+内存池+OOM保姆级科普,彻底搞懂不踩坑

摘要:本文用通俗易懂的比喻解答了C语言初学者对内存池的常见疑问。通过"租房"类比解释内存池相比malloc/free的优势:批量申请内存后自行管理,避免频繁系统调用和内存碎片。用"酒店房卡"比喻说明虚拟内存的超量分配机制,并分析OOM(内存不足)时系统的三层应对策略:内存交换、强制终止程序和内存分配限制。最后指出内存池能减少OOM风险,提供简单代码示例对比两种内存管理方式。全文以生活化比喻讲解计算机内存管理核心概念,适合编程新手理解。

2026-02-01 18:48:20 781

原创 ViLBERT 极简入门版

ViLBERT是一种多模态AI模型,能同时处理图像和文本信息。它解决了传统AI模型只能单独处理图像或文本的局限,通过交叉注意力机制实现图文信息的实时交互。模型工作时会同时分解视觉和语言信息,建立对应关系并综合理解。相比普通模型的分步处理方式,ViLBERT能更准确地完成视觉问答、图像描述生成、图文匹配等任务。其创新之处在于让视觉和语言信息在理解过程中相互指导,显著提升了多模态任务的性能。

2026-01-31 07:54:10 511

原创 Trae.cn 编辑器四大功能(builder/chat/builder with MCP/SOLO coder)大白话区别

Trae.cn的4个功能核心差异可类比盖房子:Chat是问答机器人,适合新手快速解决代码问题;Builder像积木玩具,零基础用户拖拽组件即可生成程序;Builder with MCP是增强版积木,支持复杂功能和部署;SOLOcoder则是空白编辑器,适合有基础者手写代码。选择建议:查问题用Chat,简单项目用Builder,复杂需求选Builder with MCP,想练手写代码用SOLOcoder。新手建议从Builder/Chat入门,逐步过渡到其他功能。

2026-01-31 07:53:03 1568 1

原创 强化学习 极简入门版

强化学习是一种让AI通过"试错"自主学习的方法:做对给奖励,做错受惩罚,最终找到最优策略。核心包含三个要素:智能体(学习者)、环境(学习场景)和奖励(反馈机制)。学习过程分为观察、行动、反馈、学习四个循环步骤,目标是获得长期最大总奖励。与监督学习不同,强化学习不需要标准答案,而是通过试错自主优化,如小朋友学走路或外卖员优化配送路线。整个过程无需人工指导,AI通过不断尝试和记忆反馈来提升表现。

2026-01-30 10:21:31 480

原创 一个Bert项目的主流main函数的基础解释?

本文提供了一个中文BERT文本分类项目的入门指南,详细拆解了Main函数的核心代码,适合零基础开发者快速上手。文章以酒店评论情感分类为例,涵盖固定随机种子、配置超参数、初始化BERT模型、优化器和数据加载器等关键步骤,并给出常见问题的解决方案。重点包括:1)如何确保实验可复现;2)关键参数调优技巧;3)数据格式要求;4)显存溢出处理。所有代码可直接运行,稍作修改即可适配其他文本分类任务(如新闻分类、评论质检等)。文章特别强调新手容易踩坑的地方,如数据格式、GPU内存管理和参数设置等,帮助开发者快速实现BER

2026-01-30 10:21:05 1260

原创 什么是多模态与其例子?

多模态AI指能够同时处理文字、图片、语音等不同类型信息的技术。它通过结合多种模态完成复杂任务,如视觉问答(根据图片回答文字问题)、图像描述(为图片生成文字说明)、指代表达理解(根据文字定位图片对象)等8类典型任务。这些任务模拟人类综合理解能力,使AI能像人一样处理图文结合的复杂场景,如判断图片内容是否匹配文字描述、进行多轮视觉对话等,实现更智能的信息处理与交互。

2026-01-29 09:46:52 300

原创 LSTM 极简入门版

LSTM是一种带"智能记忆"的AI模型,能自动筛选关键信息,解决普通模型"记不住长内容"的问题。它通过三个核心功能:忘记无用信息、记住关键内容、调用记忆判断,特别适合处理文字、语音等顺序内容。相比普通RNN,LSTM能长期保持关键记忆,在机器翻译、语音识别、股票预测等需要前后关联的任务中表现更优。

2026-01-29 09:45:23 364

原创 ViT(视觉 Transformer)通俗讲解:给完全没有基础的人

ViT(视觉Transformer)通过将图像分割为小方块(Patch)作为"视觉单词",模仿人类理解图像的方式。其工作流程包括:1)将图像切分为196个16x16的小方块;2)添加Class Token作为全局信息汇总者;3)为每个方块添加位置编码;4)通过Transformer的自注意力机制分析各方块间关系。相比传统CNN逐层分析的方式,ViT能直接捕捉全局关系,更高效地理解图像内容。这种方法突破了传统视觉处理的局限,实现了类似人类"一眼看清全局"的图像理解能力。

2026-01-28 11:53:03 888

原创 一文读懂Self-Attention:注意力机制的核心,Transformer的基石

本文系统介绍了自注意力机制(Self-Attention)的核心原理与应用。作为Transformer模型的关键组件,Self-Attention通过全局并行计算和动态注意力分配,解决了RNN/LSTM等传统模型的序列依赖和长距离依赖问题。文章详细解析了单头和多头Self-Attention的PyTorch实现代码,对比了与传统模型的差异,并阐述了其在NLP、CV等领域的广泛应用。针对长序列计算复杂度高的问题,介绍了稀疏注意力、线性注意力等优化方案。Self-Attention已成为现代深度学习的核心技术基

2026-01-26 17:38:28 796

原创 PIL.Image 完全指南:Python图像处理入门到实践

本文详细介绍了Python图像处理库Pillow中的核心Image模块,涵盖图像读取/保存、尺寸调整、色彩转换、旋转翻转、滤镜应用等核心功能。重点解析了open()、save()、resize()、convert()等关键方法的使用技巧,并提供了批量处理图像的实战案例。文章还总结了常见问题解决方案,如路径处理、透明通道保存、插值算法选择等注意事项。通过系统学习Image模块,开发者可以快速掌握Python图像处理的基础能力,实现各类图像编辑需求。

2026-01-25 14:16:40 731

原创 一文吃透 seedeverything:随机种子是啥?为啥你的模型结果复现不了?

机器学习训练结果难以复现?核心问题在于代码中的随机操作未被统一控制。本文详解"seedeverything"函数解决方案:1. 计算机使用伪随机数生成器,固定种子即可锁定随机序列;2. 单一库的种子固定不够,需同时控制Python、Numpy、PyTorch/TensorFlow等所有随机源;3. 提供可直接复用的通用版和框架专属版实现代码;4. 强调必须将seedeverything放在代码最开头执行;5. 指出GPU非确定性操作、DataLoader多线程、第三方库等常见复现失败原因

2026-01-25 14:05:14 958

原创 从机械匹配到语义理解:临床 NER 的 AC→BiLSTM-CRF→BERT 技术演进之路

本文系统梳理了临床命名实体识别(NER)技术的演进历程,重点分析了三代核心解决方案:Aho-Corasick算法通过词典匹配实现快速识别(准确率60-70%);BiLSTM-CRF模型结合双向LSTM的语义理解和CRF的标签修正能力(准确率85-90%);BERT预训练模型通过"预训练+微调"模式实现专业语义理解(准确率95%+)。文章详细对比了三代技术的原理、优缺点及适用场景,揭示了从"机械匹配"到"语义理解"的技术进化路径,为零基础学习者提供了

2026-01-19 16:46:51 735

原创 pip 安装依赖报 ProxyError?全网最通用解决方案(适配 Windows/Linux/macOS,不限运行工具)

pip报ProxyError的核心原因是系统级代理无效,和你用的运行工具无关。重置系统级代理:Windows 用,Linux/macOS 清空配置文件 + 环境变量;优化 pip 安装方式:Windows 换,换国内镜像源,或用 conda 安装。按照本文方法操作,不管你是在 TRADE、PyCharm 还是原生终端运行,都能彻底解决这个问题!

2026-01-19 16:06:27 839

原创 实战|从0到1跑通Chinese-clinical-NER项目,小白也能搞定的医疗/病毒实体识别改造

本文介绍了如何利用GitHub热门项目Chinese-clinical-NER实现病毒实体识别。该项目包含三种模型:基础规则模型(适合小白)、传统深度学习模型和BERT增强模型。作者作为新手,详细记录了从环境配置到模型改造的全过程,重点解决了Word2Vec参数错误、TensorFlow版本兼容等常见问题,最终通过修改词典文件成功将医疗实体识别改造为病毒识别。文章特别推荐基础规则模型作为入门首选,并分享了虚拟环境配置、镜像源使用等实用技巧,为NLP初学者提供了清晰的实战指南。

2026-01-13 00:39:04 801

原创 实战拆解ResNet18:从残差连接原理到完整代码实现(PyTorch版)

本文深入解析了ResNet18残差网络的核心原理与代码实现。ResNet通过残差连接(公式H(x)=F(x)+x)解决了深层网络的梯度消失问题,使数百层网络训练成为可能。文章详细拆解了ResNet18的完整结构:1个初始卷积池化层+4个残差块组(共8个残差块)+1个全连接层。重点分析了残差块的关键设计:3×3卷积+BN+ReLU的组合,1×1卷积处理维度匹配,以及out+=X的残差连接实现。通过参数量统计和测试验证,证明代码完美复现了官方ResNet18结构。相比AlexNet/VGG,ResNet在增加深

2026-01-11 14:24:51 1121

原创 一文吃透VGG:从原理到代码实战

VGG是由牛津大学视觉几何组提出的深度卷积神经网络架构,在2014年ImageNet竞赛中表现优异。其创新性地采用多个3×3小卷积核堆叠替代大卷积核,既减少了参数数量又增强了网络表达能力。VGG16和VGG19作为典型代表,通过16-19层的深度网络结构,在图像分类等视觉任务中展现出强大性能。该模型虽因参数量大、计算成本高存在局限,但其设计理念为后续网络发展奠定了基础,并被广泛应用于目标检测、语义分割等场景。通过迁移学习,VGG预训练模型显著提升了各类视觉任务的性能。

2026-01-10 20:22:41 1137

原创 PyTorch实现AlexNet完整代码解析

本文解析了PyTorch实现AlexNet的完整代码,包含三个核心部分:加载官方预定义模型、手动复现网络结构及验证模型参数和维度。代码通过继承nn.Module类自定义MyAlexNet,详细构建了5个卷积层和3个全连接层,并解释了各层参数设置。重点分析了forward方法中的数据流向和维度变换,包括卷积-激活-池化的经典组合、特征图展平操作等关键步骤。最后通过参数统计和输入输出测试验证了模型正确性,总参数约6000万,输入224×224图像输出1000维类别分数,符合预期。该实现完整展示了PyTorch构

2026-01-10 16:33:00 1253

原创 图形类模型发展史:从理论草图到智能时代的核心引擎

图形类模型的发展历程展现了人类用结构化思维解析复杂世界的智慧演进。从20世纪初各学科的理论萌芽,到70年代贝叶斯网络等系统化框架形成,再到21世纪与AI技术深度融合,图形模型完成了从理论工具到智能引擎的蜕变。其核心价值在于将直观的图形表达与数学逻辑结合,在医疗诊断、计算机图形学、社交网络分析等领域持续突破。随着大模型时代的到来,图形模型正迈向亿级规模数据处理和跨领域迁移的新阶段,成为数字孪生、智慧城市等复杂场景的决策支撑。未来,图形类模型将继续在多模态融合、可解释性等方面拓展边界,延续其"化繁为简

2026-01-09 23:08:24 742

原创 一个线性表示具体项目的代码详解

本文介绍了使用PyTorch生成人工数据集并进行线性回归模型训练的完整流程。主要内容包括: 数据生成函数create_data():根据指定权重w和偏置b生成带噪声的线性数据集,模拟真实数据分布。 数据分批函数data_provider():实现数据随机打乱和分批提取功能,使用yield生成器提高效率。 模型训练流程: 定义预测函数fun()和MAE损失函数maeLoss() 实现SGD优化器sgd()进行参数更新 主训练循环完成多轮迭代训练 结果可视化:比较训练得到的参数与真实值,并绘制拟合曲线。 该代码

2026-01-09 19:51:27 982

原创 #PyTorch 实现简单线性回归(y=w*x)的自动求导与参数优化

PyTorch 实现简单线性回归(y=w*x)的自动求导与参数优化

2026-01-08 20:23:50 276

原创 一个深度学习的项目的零基础详细解释,具体到每一段代码。

先明确:PyTorch 不是 “模型”,是用来搭建 / 训练深度学习模型的工具包(和 TensorFlow/Keras 是同类),它的核心意义就是 “让普通人能轻松写深度学习模型”,对比其他工具(比如纯 Python 手写、TensorFlow),优势和意义体现在 3 点:你的新冠预测模型如果用纯 Python 手写,需要自己写 “全连接层的矩阵乘法、梯度下降公式、反向传播”,至少要写 500 行;而用 PyTorch,只需要:python运行👉 PyTorch 的核心意义:把深度学习中最复杂的 “

2026-01-08 13:52:28 1052

原创 深度学习中的测试集,训练集,预测集,等一系列数据集有什么用?

深度学习中的测试集,训练集,预测集,等一系列数据集有什么用?

2026-01-07 20:35:50 409

原创 GitHub上面的“CHIP-2020 中文医学文本实体关系抽取”项目chinese_roformer-v2-char_L-12_H-768_A-12文件中缺少内容的问题?

GitHub上面的“CHIP-2020 中文医学文本实体关系抽取”项目chinese_roformer-v2-char_L-12_H-768_A-12文件中缺少内容的问题?

2026-01-07 16:20:50 821

原创 # 克隆GitHub仓库到本地与git clone之间有什么区别

克隆GitHub仓库到本地与git clone之间有什么区别

2026-01-05 15:46:40 882

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除