如果问题是由交叠的子问题所构成的,我们就可以用动态规划技术来解决它。一般来说,这样的子问题出现在对给定问题求解的递推关系中,这个递推关系中包含了相同类型的更小子问题的解。动态规划法建议,与其对交叠的子问题一次又一次地求解,还不如对每个较小的子问题只求解一次并把记录记录在表中,这样就可以从表中得出原始问题的解。
——《算法设计与分析基础》
Description (问题描述)
有一条公路经过V个村庄,每一个村庄都处在整数的坐标点上(这里假设公路拉直为X轴).规划在这条公路上建立P个邮局,当然为了方便,这些邮局应建在某P个村庄上,但是要求让不同村庄的人到邮局要走的总路程最小.
Input
先从键盘读入两个整数V和P,然后再读入V个整数,分别表示V个村庄的坐标(坐标>=0)
Output
输出P个以空格分隔的整数,按坐标从小到的顺序给出P个邮局的坐标.
Sample Input
10 3
1 4 7 19 70 89 105 204 18 40
Sample Output
7 89 204
Analysis(分析)
一、问题分析
l 在解决本问题之前,我们有必要先明确以下几点要点:
1、对于复杂的问题,我们有必要先从考虑简单情况出发,并由简单情况找出规律,发现思路.
2、当有V个村庄点,且只有一个邮局点时,邮局点的最佳选址位置为这V个村庄点的中位点.
3、当有V个村庄点,并且不只一个邮局点时,我们发现:此问题可以分解为多个子问题进行计算,并且邮局选址的最优解包含子问题的最优解,即这个邮局选址问题具有最佳子结构性质!
4、在我们容易地列出此问题的递归表达式(即后文即将提及的表达式1.1)之后,我们发现:在递归计算的过程中,许多子问题被重复计算了多次!
× 要点3、4的这两点发现,是选择动态规划求解的显著特征,也是我们选择用动态规划来解决此问题的一个重要原因.
二、算法分析
(一)、找出递归表达式
根据从特殊到一般的思路,我们先考虑当邮局数为1时的情况,再考虑邮局数大于1的情况.
1、当邮局数P=1时,易知邮局的最佳选址位置为V个村庄的中位点.
2、当邮局数P>1时,我们可以想象每个邮局对应一个辖区,那么问题就可以被转化为如何将V个村庄划分为连续的P个辖区.为此,我们做以下定义:
(1)、Center(l,r),表示当村庄xl到xr为一个辖区时,邮局所在位置.
(2)、Dis(l,r),表示当村庄xl到xr为一个辖区时,该辖区内村庄到邮局的最小距离.
(3)、TotolDis(t,k),表示将村庄xt之后的所有村庄(包括村庄xl)划分为k个辖区时,所有辖区的Dis(l,r) 总和的最小值,题目就转化为求TotolDis(t,k),有

下面,我们还是通过从特殊到一般的方法,考虑如何求TotolDis(t,k).
举特例:“在V=7,P=3时,目标是求TotolDis(t,k).”
显而易见,TotolDis(t,1)=Dis(t,6),t=2,3,4,5,6;也就是说TotolDis(1,2)=min{F,G,H,I,J},是可以在原有子问题上计算出来的.
对于情况B、C、D、E,同理.
根据上述特殊,推广并且改造表达式(1.1),可得:
显然,这是一个典型的递归过程.
(二)、构造动态规划的程序结构
在以上定义Center(l,r)、Dis(l.r)、TotalDis(t,k)的基础上,构造合理的数据结构和控制结构,自底向上的求解这个问题.
还是先考虑上述“V=7,P=3,村庄坐标为0~6”的特例,Center(l,r)表和Dis(l,r)表如下所示.
l"r | 0 | 1 | 2 | 3 | 4 | 5 | 6 | l"r | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 0 | 0 | 1 | 2 | 4 | 6 | 9 | 12 |
1 | 1 | 1 | 2 | 2 | 3 | 3 | 1 | 0 | 1 | 2 | 4 | 6 | 9 | ||
2 | 2 | 2 | 3 | 3 | 4 | 2 | 0 | 1 | 2 | 4 | 6 | ||||
3 | 3 | 3 | 4 | 4 | 3 | 0 | 1 | 2 | 4 | ||||||
4 | 4 | 4 | 5 | 4 | 0 | 1 | 2 | ||||||||
5 | 5 | 5 | 5 | 0 | 1 | ||||||||||
6 | 6 | 6 | 0 | ||||||||||||
center[l][r] 图1-1 特例的Center(l,r)表 | dis[l][r] 图1-2 特例的Dis(l,r)表 |
据此,我们可以很容易的编写出计算center[l][r]和dis[l][r]的代码模块.
1
![]() ![]() ![]() 2 ![]() 3 ![]() 4 ![]() 5 ![]() 6 ![]() 7 ![]() 8 ![]() 9 ![]() 10 ![]() 11 ![]() 12 ![]() 13 ![]() 14 ![]() 15 ![]() 16 ![]() 17 ![]() 18 ![]() 19 ![]() 20 ![]() 21 ![]() 22 ![]() |
calculateCenter()函数 |
1
![]() ![]() ![]() 2 ![]() 3 ![]() 4 ![]() 5 ![]() 6 ![]() 7 ![]() 8 ![]() 9 ![]() 10 ![]() 11 ![]() 12 ![]() 13 ![]() 14 ![]() 15 ![]() 16 ![]() 17 ![]() ![]() ![]() 18 ![]() 19 ![]() 20 ![]() 21 ![]() 22 ![]() 23 ![]() 24 ![]() 25 ![]() 26 ![]() 27 ![]() 28 ![]() 29 ![]() 30 ![]() 31 ![]() 32 ![]() 33 ![]() 34 ![]() |
calculateDis()函数 |
在计算TotalDis(0,P)时,由于题目要求输出邮局的位置,所以在计算TotalDis(0,P)的过程中,只计算最小值还不够,还必须记录下取得最小值时的分辖区情况.于是,我们这么定义TotalDis二维数组.
1
![]() ![]() ![]() 2 ![]() 3 ![]() 4 ![]() 5 ![]() 6 ![]() 7 ![]() 8 ![]() 9 ![]() 10 ![]() 11 ![]() 12 ![]()
|
totalDis表的元素结构 |
计算过程如下所示.
1
![]() ![]() ![]() 2 ![]() 3 ![]() 4 ![]() 5 ![]() 6 ![]() 7 ![]() 8 ![]() 9 ![]() 10 ![]() 11 ![]() 12 ![]() 13 ![]() 14 ![]() 15 ![]() 16 ![]() 17 ![]() 18 ![]() 19 ![]() 20 ![]() 21 ![]() ![]() 22 ![]() 23 ![]() 24 ![]() 25 ![]() ![]() ![]() 26 ![]() 27 ![]() 28 ![]() 29 ![]() 30 ![]() 31 ![]() ![]() ![]() 32 ![]() 33 ![]() 34 ![]() 35 ![]() 36 ![]() 37 ![]() ![]() ![]() 38 ![]() 39 ![]() 40 ![]() 41 ![]() 42 ![]() 43 ![]() 44 ![]() 45 ![]() 46 ![]() 47 ![]() 48 ![]() 49 ![]() 50 ![]() |
calculateTotalDis()函数 |
得到的TotalDis(t,k)表如下所示.
t"k(dis/r) | 1 | 2 | 3 | ||
0 | 12/ | 2/6 | 4/0 | ||
1 | 9/ | 4/3 | 3/1 | ||
2 | 6/ | 3/3 | 2/2 | ||
3 | 4/ | 2/3 | 1/3 | ||
4 | 2/ | 1/4 | 0/4 | ||
5 | 1/ | 0/5 | -1/0 | ||
6 | 0/ | -1/0 | -1/0 | ||
表示此区域在本算法中为无效区域 表示此区域在本算法中为有效区域 totalDis[t][k] |
图1-3 特例的TotalDis(t,k)表
对于本题,还有一个地方需要注意,那就是输出.由于题目要求输出各邮局的坐标,在这里需用到递归的方法,具体输出模块如下所示.
1
![]() ![]() ![]() 2 ![]() 3 ![]() 4 ![]() 5 ![]() 6 ![]() 7 ![]() ![]() ![]() 8 ![]() 9 ![]() 10 ![]() 11 ![]() 12 ![]() 13 ![]() 14 ![]() 15 ![]() 16 ![]()
|
output函数 |
三、结语
另外,本问题也可以采用“备忘录”方式解决,有兴趣的朋友可以自己研究,这里不再赘述.
时间仓促,水平有限,不足之处,请各位批评指正!
Code(源码)
下载入口:
http://www.cnblogs.com/Files/norx/[ReleaseEdition].[DynamicProgramming].[ByNORX].rar