- 博客(3)
- 收藏
- 关注
原创 CSP 数论专题
假设有 m-1 个整数,那么 α,2α,3α,...,(m-1)α 中没有一个是 m 的倍数,也不存在任意两个数模 m 同余。那么有 m|a(x2-x1) 成立,又由于 (a,m)=1,因此 m|(x2-x1),与 0<X1<X2<m 矛盾。由 α·α^(φ(m)-1)≡1(mod m),可得 α^(φ(m)-1)≡α-¹(mod m)例如:φ(1)=1,φ(2)=1,φ(3)=2,φ(4)=2,φ(5)=4,φ(6)=2。欧拉定理:如果 (α, m)=1,则 α^(φ(m))≡1(mod m)
2024-11-25 22:23:31
383
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人