在学习数学的过程中大家会见到许多复杂的公式符号。因此在学习具体内容之前,建议大家首先理解下列常见符号的含义。一些特殊的符号会在对应的章节中讲到,而这里则有一些极为常见的符号需要大家提前掌握。
整除/同余理论常见符号
- 整除符号:x|y,表示x整出y,即x是y的因数。
- 取模符号:x mod y(也是x%y),表示 x除以 y 得到的余数。
- 互质符号:x⊥y,表示x,y互质。
- 最大公约数:gcd(x,y),在无混淆意义的时侯可以写作(x,y)。
- 最小公倍数:lcm(x,y)
,在无混淆意义的时侯可以写作[x,y]。
数论函数常见符号
求和符号:∑符号,表示满足特定条件的数的和。举几个例子:
表示 1+2+...+n的和。其中i是一个变量,在求和符号的意义下i通常是 正整数或者非负整数(除非特殊说明)。这个式子的含义可以理解为,i从1循环到
,所有i的和。这个式子用代码的形式很容易表达。当然,学过简单的组合数学的同学都知道。
表示所有被 T 包含的集合的大小的和。
表示的是n以内有多少个与n互质的数,即
,
是欧拉函数。
求积符号:
符号,表示满足特定条件的数的积。举几个例子:
表示n的阶乘,即 n!。在组合数学常见符号中会讲到。
表示
。
表示 d 的所有因数的乘积。
在行间公式中,求和符号与求积符号的上下条件会放到符号的上面和下面,这一点要注意。
其他常见符号
- 阶乘符号 ! ,n! 表示
。特别地,0!=1。
- 向下取整符号:
,表示小于等于x的最大的整数。常用于分数,比如分数的向下取整
。
- 向上取整符号:
,与向下取整符号相对,表示大于等于x的最小的整数。
- 组合数:
- 第一类斯特林数:
- 第二类斯特林数:

20万+

被折叠的 条评论
为什么被折叠?



