Maximum Subarray

题目描述:

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

解题思路:

使用动态规划,计算以数组中的每一个元素为最后一个元素的子数组的和的最大值,然后取最大的值即可。
遍历数组nums,用一个变量cur_sum保存以当前元素为最后一个元素的子数组的最大和(假设当前遍历到的元素为i):
(1)如果cur_sum<=0,更新cur_sum=nums[i]
(2)如果cur_sum>0,更新cur_sum=cur_sum+nums[i]


AC代码如下:

class Solution {
public:
	int maxSubArray(vector<int>& nums) {
		if (nums.size() == 0) return 0;
		int cur_sum = nums[0];
		int ans = cur_sum;
		int n = nums.size();
		for (int i = 1; i < n; ++i){
			if (cur_sum <= 0){
				cur_sum = nums[i];
			}
			else{
				cur_sum += nums[i];
			}
			ans = max(ans, cur_sum);
		}
		return ans;
	}
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值