一、预备知识
1. 路由生成过程多智能体马尔可夫决策过程(MAMDP):
这种方法的核心思想是将网络中的每个设备或节点视为一个智能体,它们能够根据当前网络状态做出决策,以选择最佳的路由路径。
这种方法特别适用于动态变化的网络环境,其中网络流量和节点状态不断变化,需要实时调整路由策略以优化网络性能。
在多智能体MDP框架下,每个智能体(即网络中的每个节点)都遵循一定的策略来选择动作,这些动作会影响到网络状态的转移和奖励的获取。在这个过程中,智能体的目标是最大化累积奖励,这通常对应于优化网络性能,比如最小化延迟、最大化吞吐量或平衡网络负载。
2. 深度神经网络DNN的工作过程:
输入层:流量的源节点、目的节点、服务类型、网络状态等信息作为输入。
通用特征提取层:对输入的网络状态和流量特征进行处理,提取出通用特征,适用于所有流量类型。
专用输出层:根据流量的具体类型(如延迟敏感型、吞吐量敏感型等),将通用特征输入到对应的专用输出层,产生具体的路由决策。
3. 效用函数(Utility Function)的作用:
效用函数的作用是衡量每个流量的QoS(质量服务)需求是否得到了满足,并为不同的流量类型赋予不同的优先级。在DRL-OR中,流量被分为多个类型,每个类型都有不同的性能指标需求,例如延迟、吞吐量、丢包率等。效用函数通过这些性能指标来评价路由选择的质量,指导智能体做出最优决策。
4. DRL-OR与其他算法的比较
QoSR(Quality of Service Routing):QoSR算法关注QoS要求,通常在延迟和吞吐量方面表现较好,但在处理Type IV流量(延迟-丢包率敏感型流量)时会产生较高的丢包率。
LBR(Load Balancing Routing):LBR算法注重负载均衡,能有效减少拥塞,但无法为延迟和吞吐量敏感型流量提供最优的QoS。
SPR(Shortest Path Routing):SPR选择最短路径进行路由,虽然简单但忽视了QoS需求,通常在拥塞或负载较高时效果不佳。
二、论文部分
题目:DRL-OR:基于深度强化学习的多类型业务需求在线路由
创新点:
首次将深度强化学习应用于多类型服务需求的在线路由优化,实现了动态环境中的多QoS优化。
提出了安全在线学习框架,平衡了探索与安全性,增强了算法的可靠性。
设计了部分共享、部分专有的策略网络结构,兼顾训练效率和个性化需求。
验证了算法在部分部署和完整部署场景中的适用性。
通过多智能体协作学习提升了分布式路由优化的能力。
Abstract
- 提出了一种基于多智能体深度强化学习的在线路由算法(DRL-OR),DRL-OR通过组织智能体以逐跳的方式生成路由,采用了全面奖励函数、高效学习算法和新颖的深度神经网络结构
- 为了确保可靠性并加速在线学习过程,DRL-OR进一步引入了安全学习机制
- 在SDN架构下实现DRL-OR,并使用基于Mininet的实验,使用真实的网络拓扑和流量跟踪进行测试
1 Introduction
1.挑战
- 现有的方法通常将多样化QoS要