求1+2+...+n,要求不能使用乘除法,for、while、if、else、switch、case等关键字以及判断语句

该博客探讨了在不允许使用乘除法、循环和判断语句的情况下,如何求解1到n的和。提出了四种创新方法:1) 利用构造函数和静态成员变量;2) 使用虚函数模拟递归;3) 函数指针数组实现类似递归的功能;4) 非类型模板加特化进行编译时计算。这些方法展示了编程思维的灵活性。
摘要由CSDN通过智能技术生成

 

题目:求1+2+...+n,要求不能使用乘除法,for、while、if、else、switch、case等关键字以及判断语句

分析:

方法(1):利用构造函数。我们定义一个类,类中定义两个静态成员变量,让构造函数里面操作这两个静态的成员变量,然后创建n个对象,即可完成我们想要的。

方法(2):利用虚函数。模拟递归,但是出口条件不能用条件语句判断,我们用两个函数来模拟(一个模拟继续递归,一个模拟出口条件)当n不为0调用B:sum(),否则调用A:sum(),相当于递归出口。

方法(3):与方法(2)思路一致,只是在C语言层次,只能用函数指针(数组)来模拟,来决定调用哪个函数(也是一个函数模拟递归调用一个函数模拟出口条件)

方法(4):利用非类型模板(加特化)类型。模板模拟递归,特化模拟递归出口总体思路还是递归+递归出口(并且这两步不用条件语句判断),这个用非类型模板的方法时间复杂度为O(1),因为它是在编译时就计算了,但是缺点是n必须是在编译期间就能确定的常量,不能是变量,而且编译器对递归编译代码的递归深度有限制。

class Sum
{
private:
	static int n;
	static int sum;
public:
	Sum()
	{
		n++;
		sum += n;
	}

	static int ret()
	{
		return sum;
	}
};
int Sum::n = 0;
int Sum::sum = 0;

int s_sum(int n)
{
	Sum* p = new Sum[n];
	delete[]p;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值