剑指offer ==== 递归之(斐波那契、跳台阶、矩形覆盖、变态跳台阶)

1. 斐波那契额数列

题目描述

大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0,第1项是1)。
n<=39

题目分析

方法三:动态规划
虽然方法二可以解决此题了,但是如果想让空间继续优化,那就用动态规划,优化掉递归栈空间。
方法二是从上往下递归的然后再从下往上回溯的,最后回溯的时候来合并子树从而求得答案。
那么动态规划不同的是,不用递归的过程,直接从子树求得答案。过程是从下往上。

C++代码

class Solution {
public:
    int Fibonacci(int n) {
        vector<int> dp(n+1,0);
        dp[1] = 1;
        for(int i = 2;i < n+1;i++)
        {
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n];

    }
};

时间复杂度:O(n)
空间复杂度:O(n)
###继续优化
发现计算f[5]的时候只用到了f[4]和f[3], 没有用到f[2]…f[0],所以保存f[2]…f[0]是浪费了空间。
只需要用3个变量即可。

int Fibonacci(int n) {
     if (n == 0 || n == 1) return n;
        int a = 0, b = 1, c;
        for (int i=2; i<=n; ++i) {
            c = a + b;
            a = b;
            b = c;
        }
        return c;
}

时间复杂度:O(n)
空间复杂度:O(1)
完美!

2. 跳台阶

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

C++代码

同上!!!!!!!!

3. 矩形覆盖

题目描述

我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

比如n=3时,2*3的矩形块有3种覆盖方法:

C++代码

同上!!!

4.变态跳台阶

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

题目分析

方法一:暴力方法
设f[i] 表示 当前跳道第 i 个台阶的方法数。那么f[n]就是所求答案。

假设现在已经跳到了第 n 个台阶,那么前一步可以从哪些台阶到达呢?

如果上一步跳 1 步到达第 n 个台阶,说明上一步在第 n-1 个台阶。已知跳到第n-1个台阶的方法数为f[n-1]

如果上一步跳 2 步到达第 n 个台阶,说明上一步在第 n-2 个台阶。已知跳到第n-2个台阶的方法数为f[n-2]

。。。

如果上一步跳 n 步到达第 n 个台阶,说明上一步在第 0 个台阶。已知跳到 第0个台阶的方法数为f[0]

那么总的方法数就是所有可能的和。也就是f[n] = f[n-1] + f[n-2] + … + f[0]

显然初始条件f[0] = f[1] = 1

所以我们就可以先求f[2],然后f[3]…f[n-1], 最后f[n]

方法二

对于方法一中的:f[n] = f[n-1] + f[n-2] + … + f[0]

那么f[n-1] 为多少呢?

f[n-1] = f[n-2] + f[n-3] + … + f[0]

所以一合并,f[n] = 2*f[n-1],初始条件f[0] = f[1] = 1

所以可以采用递归,记忆化递归,动态规划,递推。具体详细过程,可查看青蛙跳台阶。

C++代码

int jumpFloorII(int n) {
    if (n==0 || n==1) return 1;
    vector f(n+1, 0);
    f[0] = f[1] = 1;
    for (int i=2; i<=n; ++i) {
        for (int j=0; j<i; ++j) {
            f[i] += f[j];
        }
    }
    return f[n];
}
class Solution {
public:
    int jumpFloorII(int number) {
        if(number == 0 || number == 1) return number;
        int a = 1,b;
        for(int i = 2;i <= number; i++)
        {
            b = a << 1;
            a = b;
        }
        return b;

    }
};
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页