龙龙送外卖
龙龙是“饱了呀”外卖软件的注册骑手,负责送帕特小区的外卖。帕特小区的构造非常特别,都是双向道路且没有构成环 —— 你可以简单地认为小区的路构成了一棵树,根结点是外卖站,树上的结点就是要送餐的地址。
每到中午 12 点,帕特小区就进入了点餐高峰。一开始,只有一两个地方点外卖,龙龙简单就送好了;但随着大数据的分析,龙龙被派了更多的单子,也就送得越来越累……
看着一大堆订单,龙龙想知道,从外卖站出发,访问所有点了外卖的地方至少一次(这样才能把外卖送到)所需的最短路程的距离到底是多少?每次新增一个点外卖的地址,他就想估算一遍整体工作量,这样他就可以搞明白新增一个地址给他带来了多少负担。
输入格式:
输入第一行是两个数
N
和
M
(
2
≤
N
≤
105
,
1
≤
M
≤
105
)
N 和 M (2≤N≤10 5 , 1≤M≤10 5 )
N和M(2≤N≤105,1≤M≤105),分别对应树上节点的个数(包括外卖站),以及新增的送餐地址的个数。
接下来首先是一行 N N N 个数,第 i i i 个数表示第 i i i 个点的双亲节点的编号。节点编号从 1 1 1 到 N N N,外卖站的双亲编号定义为 − 1 −1 −1。
接下来有 M M M 行,每行给出一个新增的送餐地点的编号 X i X i Xi 。保证送餐地点中不会有外卖站,但地点有可能会重复。
为了方便计算,我们可以假设龙龙一开始一个地址的外卖都不用送,两个相邻的地点之间的路径长度统一设为 1,且从外卖站出发可以访问到所有地点。
注意:所有送餐地址可以按任意顺序访问,且完成送餐后无需返回外卖站。
输出格式:
对于每个新增的地点,在一行内输出题目需要求的最短路程的距离。
输入样例:
7 4
-1 1 1 1 2 2 3
5
6
2
4
输出样例:
2
4
4
6
解题思路:
d
f
s
+
贪
心
dfs + 贪心
dfs+贪心
将每个路径都走两遍,最后减去最长的一个路径
#include <iostream>
#include <algorithm>
#include <set>
#include <queue>
#include <string>
#include <cstring>
#include <vector>
using namespace std;
typedef pair<string,string> pss;
typedef pair<int,int> pii;
const int inf = 0x3f3f3f3f;
const int N = 1e5 + 10;
bool st[N];
int root, ans;
int p[N], d[N];
vector<int> v[N];
void dfs(int pos)
{
if(st[pos] || pos == root) return ;
st[pos] = true;
ans += 2;
dfs(p[pos]);
}
void init(int u, int dep) // 求出每个节点的深度,用来求最大路径
{
for(auto it:v[u])
init(it, dep + 1);
d[u] = dep;
}
int main()
{
int n, m; cin >> n >> m;
for(int i = 1; i <= n; i ++)
{
int x; cin >> x;
if(x == -1)
{
p[i] = i;
root = i;
continue;
}
p[i] = x;
v[x].push_back(i);
}
init(root, 1);
int maxdep = -1;
while(m--)
{
int x; cin >> x;
if(st[x]) cout << ans - maxdep + 1 << endl;
else
{
dfs(x);
maxdep = max(maxdep,d[x]);
cout << ans - maxdep + 1 << endl;
}
}
}