【机器学习】琴生不等式(Jensen's inequality)

【机器学习】琴生不等式(Jensen’s inequality):

凸/凹函数概述

“琴生不等式描述的是积分的凸/凹函数值和凸/凹函数的积分值间的关系。”

以上定义来自维基百科,虽然晦涩难懂,但是我们可以得出结论:在学习琴生不等式的时,必须要对与之相关凸/凹函数有一个大概的认识。

什么是凸/凹函数?

“凸函数是具有如下特性的一个定义在某个向量空间的凸子集 C C C(区间)上的实值函数 f f f:对其定义域 C C C上的任意两点 x 1 x_1 x1, x 2 x_2 x2,总有 f ( x 1 + x 2 2 ) ≤ f ( x 1 ) + f ( x 2 ) 2 f(\frac{x_1+x_2}{2})\leq\frac{f(x_1)+f(x_2)}{2} f(2x1+x2)2f(x1)+f(x2)。”

“凹函数是具有如下特性的一个定义在某个向量空间的凹子集 C C C(区间)上的实值函数 f f f:对其定义域 C C C上的任意两点 x 1 x_1 x1, x 2 x_2 x2,总有 f ( x 1 + x 2 2 ) ≥ f ( x 1 ) + f ( x 2 ) 2 f(\frac{x_1+x_2}{2})\geq\frac{f(x_1)+f(x_2)}{2} f(2x1+x2)2f(x1)+f(x2)。”

以上定义依然来自维基百科,依然晦涩难懂,重要的是了解以下结论。

结论一:凸/凹函数的二阶导数恒大于/小于零

结论二:一个凸/凹函数上任意两点所作割线一定在这两点之间的函数图像的上/下方

琴生不等式概述

1、若 f ( x ) f(x) f(x)是区间 ( a , b ) (a,b) (a,b)上的凸函数,则对任意的 x 1 , x 2 , x 3 ,   . . . . . . , x n ∈ ( a , b ) x_1,x_2,x_3,\ ......,x_n\in(a,b) x1,x2,x3, ......,xn(a,b),有不等式:
f ( x 1 + x 2 + x 3 + . . . . . . + x n n ) ≤ f ( x 1 ) + f ( x 2 ) + f ( x 3 ) + . . . . . . + f ( x n ) n f(\frac{x_1+x_2+x_3+......+x_n}{n})\leq\frac{f(x_1)+f(x_2)+f(x_3)+......+f(x_n)}{n} f(nx1+x2+x3+......+xn)nf(x1)+f(x2)+f(x3)+......+f(xn)

有当且仅当 x 1 = x 2 = x 3 = . . . . . . = x n x_1=x_2=x_3=......=x_n x1=x2=x3=......=xn时等号成立。

2、若 f ( x ) f(x) f(x)是区间 ( a , b ) (a,b) (a,b)上的凹函数,则对任意的 x 1 , x 2 , x 3 ,   . . . . . . , x n ∈ ( a , b ) x_1,x_2,x_{3,\ }......,x_n\in(a,b) x1,x2,x3, ......,xn(a,b),有不等式:
f ( x 1 + x 2 + x 3 + . . . . . . + x n n ) ≥ f ( x 1 ) + f ( x 2 ) + f ( x 3 ) + . . . . . . + f ( x n ) n f(\frac{x_1+x_2+x_3+......+x_n}{n})\geq\frac{f(x_1)+f(x_2)+f(x_3)+......+f(x_n)}{n} f(nx1+x2+x3+......+x

  • 4
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值