OneHotEncoder独热编码和 LabelEncoder标签编码

在这里插入图片描述

一、机器学习中的特征类别:连续型特征和离散型特征
1、连续型特征

  获取的原始特征,必须对每一特征分别进行归一化,比如,特征A的取值范围是[-1000,1000],特征B的取值范围是[-1,1].如果使用logistic回归, w 1 ∗ x 1 + w 2 ∗ x 2 w_1*x_1+w_2*x_2 w1x1+w2x2,因为 x 1 x_1 x1的取值太大了,所以 x 2 x_2 x2基本起不了作用,所以,必须进行特征的归一化,每个特征都单独进行归一化,通常放缩到均值为0,方差为1。
  再者,连续型特征,采用二分法对连续属性进行处理,例如决策树对一个连续属性a“叶子长度”,我们对样本集中的所有属性a的取值(比如有3.9, 5.2, 2.3, 4.4)升序排序(2.3, 3.9, 4.4, 5.2),然后取属性a相邻两个取值的平均值(3.1, 4.15, 4.8)作为阈值进行二分类,然后计算不同阈值下的信息增益/基尼指数。
在这里插入图片描述

2、离散型特征

   对于离散的特征基本就是按照one-hot(独热)编码,该离散特征有多少取值,就用多少维来表示该特征。

二、独热编码
from sklearn.preprocessing import OneHotEncoder

enc = OneHotEncoder()

"""
第一个特征是0,1
第二个特征是0,1,2
第三个特征是0,1,2,3
所以n_values_ 是表示特征个数2,3,4
feature_indices_表示特征位数[0:2]表示第一个特征,[2:5]表示第二个特征,[5:9]表示第三个特征
所以[0,1,1]表示[(1,0),(0,1,0),(0,1,0,0)]
"""

enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
print("enc.n_values_ is:", enc.n_values_)
print("enc.feature_indices_ is:", enc.feature_indices_)
print(enc.transform([[0, 1, 1]]).toarray())

#enc.n_values_ is: [2 3 4]
#enc.feature_indices_ is: [0 2 5 9]
#[[1. 0. 0. 1. 0. 0. 1. 0. 0.]]

  为什么要使用独热编码?独热编码(哑变量 dummy variable)是因为大部分算法是基于向量空间中的度量来进行计算的,为了使非偏序关系的变量取值不具有偏序性,并且到圆点是等距的。使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用one-hot编码,会让特征之间的距离计算更加合理。离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1

  为什么特征向量要映射到欧式空间?将离散特征通过one-hot编码映射到欧式空间,是因为,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间

1、独热编码的优缺点
  • 优点:独热编码解决了分类器不好处理属性数据的问题,在一定程度上也起到了扩充特征的作用。它的值只有0和1,不同的类型存储在垂直的空间。
  • 缺点:当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。
2、不用独热编码和不需要归一化

  独热编码用来解决类别型数据的离散值问题。将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。有些基于树的算法在处理变量时,并不是基于向量空间度量,数值只是个类别符号,即没有偏序关系,所以不用进行独热编码Tree Model不太需要one-hot编码: 对于决策树来说,one-hot的本质是增加树的深度

  基于参数的模型或基于距离的模型,都是要进行特征的归一化。基于树的方法是不需要进行特征的归一化,例如随机森林,bagging 和 boosting等

三、标签编码
from sklearn.preprocessing import LabelEncoder
import warnings

warnings.filterwarnings(action='ignore', category=DeprecationWarning)

enc = LabelEncoder()
enc.fit(["paris", "paris", "tokyo", "amsterdam"])
print(list(enc.classes_))  # 三个类别分别为0 1 2
print(enc.transform(["tokyo", "tokyo", "paris"]))  # [2 2 1]
print(enc.inverse_transform([2, 2, 1]))  # 逆过程

#['amsterdam', 'paris', 'tokyo']
#[2 2 1]
#['tokyo' 'tokyo' 'paris']

  Label encoding在某些情况下很有用,但是场景限制很多。比如有一列 [dog,cat,dog,mouse,cat],我们把其转换为[1,2,1,3,2]。这里就产生了一个奇怪的现象:dog和mouse的平均值是cat,没有任何意义。而像decision tree,random forest和xgboost这些算法能处理好这种转换,而且相比转换前,所需要的内存空间小一点

四、sklearn预处理

在这里插入图片描述

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值