独热编码与标签编码

机器学习中,OneHotEncoder和LabelEncoder是离散型变量的两种编码方式。OneHotEncoder因其能保持特征间的等距性和适用于向量空间计算,被广泛使用,常配合PCA进行特征降维。而LabelEncoder由于可能导致数据的偏序关系,应用场景较为有限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在看机器学习,遇到了两种编码形式,OneHotEncoder(独热编码)和LabelEncoder(标签编码),感觉既然都是为了给离散型变量编码,为什么要有两种,既然有两种,那平时该用哪一种。

先说结论:OneHotEncoder更常用,LabelEncoder目前应用场景不多

以下是解释:

用OneHotEncoder是因为:目前大部分算法都是基于向量空间(欧式空间)中的度量来进行计算的,为了使非偏序关系的变量取值不具有偏序性,并且到圆点是等距的。将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用独热编码,会让特征之间的距离计算更加合理。离散特征进行编码后,每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。

OneHotEncoder中,不同特征之间的欧氏距离是相等的,这种特性经常运用到特征相似度的计算中,它可以让离散型变量的特征连续化,同时,OneHotEncoder加上PCA(主成分分析)是目前很常用的方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值