向量

向量



向量的定义

        所谓向量, 就是有长度及方向的量, 一般由多个标量组合而成。
例:
        点A(x, y) 到 点B(x, y) 的向量表示为 A B → \overrightarrow{AB} AB
         A B → = ( B x − A x , B y − A y ) \overrightarrow{AB}=({B}_{x} - {A}_{x}, {B}_{y} - {A}_{y}) AB =(BxAx,ByAy)

3D游戏中表示向量 点 B (x, y, z) 为 B → \overrightarrow{B} B . 只有一个点, 是因为默认点A(x, y, z) 的坐标为 (0, 0, 0). 带入上面的公式为:
         B → = ( B x − A x , B y − A y , B z − A z ) \overrightarrow{B}=({B}_{x} - {A}_{x}, {B}_{y} - {A}_{y}, {B}_{z} - {A}_{z}) B =(BxAx,ByAy,BzAz)
         B → = ( B x − 0 , B y − 0 , B z − 0 ) \overrightarrow{B}=({B}_{x} - 0, {B}_{y} - 0, {B}_{z} - 0) B =(Bx0,By0,Bz0)
         B → = ( B x , B y , B z ) \overrightarrow{B}=({B}_{x}, {B}_{y}, {B}_{z}) B =(Bx,By,Bz)



向量数乘

        向量 B(x, y) 与实数 n 的乘积为一个向量, 记做 nB .
例:
        向量 B(x, y) 与 n 做数乘云算.
         n B = ( B x ∗ n , B y ∗ n ) nB =({B}_{x} * n, {B}_{y} * n) nB=(Bxn,Byn)


向量数乘的几何意义

        向量的数乘, 表现为向量的方向和向量的模 ( 向量的长度 ) 的变化, 可以看做对 向量方向, 向量长度 的调整算法:
                当 n > 0 时, 向量方向不不变, 模 ( 向量的长度 ) 变为原来的 |n| 倍.
                当 n < 0 时, 向量方向变为原来的反方向, 模 ( 向量的长度 ) 变为原来的 |n| 倍.
                当 n = 0 时, 向量变为 0 向量, 模 ( 向量的长度 ) 等于 0 .



向量加法和减法

        两个向量必须维度相同才能相加, 相减. 结果向量的维度与原向量相同.
        例:
        向量 W = Q + P, (Q, P 同为三维向量)
         W = ( Q x + P x , Q y + P y , Q z + P z ) W = ( {Q}_{x} + {P}_{x}, {Q}_{y} + {P}_{y}, {Q}_{z} + {P}_{z} ) W=(Qx+Px,Qy+Py,Qz+Pz)


向量加法和减法的几何意义

        向量 a 和 b 的相加的几何解释为: 平移向量, 使向量a的头连接向量b的尾,接着从 a 的尾向 b 的头化一个向量. 这就是向量加法的 “三角形法则”. 向量减法与之类似.
        加法: 向量 A + 向量 B = 0点 到 向量A + 向量A作为起点. 平移过来的向量B
图解:
向量加法
        减法: 向量 A - 向量 B = B为起点 A为终点的 向量
图解:
向量减法



向量的长度(模)

        向量的大小称为向量的长度或者模,
        向量 V V V 的长度记为 ∣ V ∣ \left | V \right | V


向量长度的计算

        一个 n n n 维向量 V V V 的长度(模), 得到下面公式:
∣ V ∣ = ∑ i = 1 n V i 2 \left | V \right |=\sqrt{ \sum_{i=1 }^{n} {V_{i}}^{2} } V=i=1nVi2
        对于三维向量 V V V, 可以展开为:
∣ V ∣ = V x 2 + V y 2 + V z 2 \left | V \right |=\sqrt{ {V_{x}}^{2} + {V_{y}}^{2} + {V_{z}}^{2} } V=Vx2+Vy2+Vz2



单位向量

        长度为 1 的向量称为单位向量, 单位向量也使用上标符号^, 记为向量 V ^ \widehat{V} V (hat V)


向量的单位化

        对于任意 n n n 维非零向量 V V V, 可以通过对于每一维上的数除以 ∣ V ∣ \left | V \right | V 将向量 V V V的长度变为单位长度, 这个操作称为向量的单位化. 单位化后的向量记作 V ^ \widehat{V} V
公式:
V ^ = V ∣ V ∣ , V ≠ 0 \widehat{V}=\frac{V}{\left | V \right |}, V\neq 0 V =VV,V̸=0

例:
        单位化 2D 向量[12, -5]:
[ 12 , − 5 ] ∣ [ 12 , − 5 ] ∣ = [ 12 , − 5 ] [ 1 2 2 + − 5 2 ] \frac{\left [ 12 , -5\right ]}{\left | \left [ 12 , -5\right ] \right |} =\frac{\left [ 12 , -5\right ]}{ \sqrt{\left [ 12^{2} + -5^{2}\right ] }} [12,5][12,5]=[122+52] [12,5]
= [ 12 , − 5 ] 169 =\frac{\left [ 12 , -5\right ]}{ \sqrt{ 169 }} =169 [12,5]
= [ 12 , − 5 ] 13 =\frac{\left [ 12 , -5\right ]}{ 13 } =13[12,5]
= [ 0.923 , − 0.385 ] =\left [ 0.923 , -0.385\right ] =[0.923,0.385]


向量的点乘(点积)

        数量积也叫内积, 点积, 求数量积的过程, 称为点乘. 两个 n n n 维向量 P P P Q Q Q的数量积, 记作 P ⋅ Q P \cdot Q PQ
公式:
P ⋅ Q = ∑ i = 1 n P i Q i P \cdot Q = \sum_{i=1 }^{n} {P_{i} Q_{i}} PQ=i=1nPiQi
三维向量的点乘, 可以展开为:
P ⋅ Q = P x Q x + P y Q y + P z Q z P \cdot Q = P_{x} Q_{x} + P_{y} Q_{y} + P_{z} Q_{z} PQ=PxQx+PyQy+PzQz


向量点乘(点积)的几何意义

        一般来说, 点乘结果描述了两个向量的 “相似” 程度, 点乘结果越大, 两个向量越相近. 已知两个向量 P P P Q Q Q 的长度和他们的夹角 α \alpha α. 则 P ⋅ Q P \cdot Q PQ 满足下面公式:
P ⋅ Q = ∣ P ∣ ∣ Q ∣ c o s   α P \cdot Q = \left | P \right| \left | Q \right| cos \space \alpha PQ=PQcos α

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值