自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 生成式 AI 与知识图谱深度融合:打造智能问答系统的实战指南

生成式 AI 虽然能生成丰富的文本,但在面对需要准确知识的问题时,可能会出现 “幻觉”,产生错误或虚构的内容。而知识图谱以三元组(实体,关系,实体)的形式,将知识结构化存储,具有高度的准确性和可解释性。

2025-05-24 12:55:13 2598

原创 国产操作系统 KylinOS 学习心得:从入门到实战的技术沉淀

掌握 KylinOS 从安装到运维的全流程技能,理解国产操作系统的安全性与兼容性优势;熟练运用 Shell 脚本实现自动化运维,提升工作效率;攻克权限配置、磁盘管理、数据迁移等企业级场景痛点。KylinOS 作为国产操作系统的标杆,在政企、工业等领域的应用日益广泛。通过本次学习,我不仅掌握了技术实操能力,更深刻认识到国产操作系统的发展潜力。后续将深入探索 MES 系统迁移部署等高级场景,持续沉淀技术经验,为国产操作系统的推广落地贡献力量。

2025-12-26 09:41:22 629

原创 SpringBoot 信创实战:麒麟 V10 + 统信 UOS 全栈适配指南(国产 OS + 数据库 + 中间件企业级落地方案)

随着信创产业全面推进,麒麟操作系统(KylinOS V10)、统信操作系统(UOS)、深度操作系统(Deepin)等国产 OS 已成为政企项目的标准部署环境。SpringBoot 作为后端开发主流框架,其在国产操作系统上的适配能力、稳定性和性能优化,直接决定了信创项目的落地效果。本文基于 SpringBoot 2.7.x(LTS)版本,以麒麟 V10(ARM/x86 架构)和统信 UOS(x86 架构)

2025-12-19 08:58:02 973

原创 SpringBoot 实战:从 0 到 1 搭建适配国产数据库的企业级后端应用(附性能优化 + 安全防护指南)

在信创国产化浪潮下,政企类项目对数据库的自主可控要求日益严格,MySQL、Oracle 等海外数据库逐步被达梦(DM)、人大金仓(KingbaseES)、华为高斯(GaussDB)、OceanBase等国产数据库替代。SpringBoot 作为后端开发的主流框架,适配国产数据库已成为企业级开发的核心能力。本文基于 SpringBoot 2.7.x(LTS)版本,以达梦 DM8。

2025-12-12 10:25:34 1195

原创 SpringBoot 实战:从 0 到 1 搭建企业级后端应用

SpringBoot 作为 Spring 生态的 "脚手架",彻底解决了传统 Spring 配置繁琐、依赖冲突等痛点,凭借自动配置、 starters 依赖、嵌入式服务器、生产级特性四大核心优势,成为微服务架构、企业级应用开发的首选框架。本文将带大家从工程搭建到生产部署,完整掌握 SpringBoot 开发流程,并分享能直接落地的性能优化技巧。代码规范:遵循 RESTful API 设计(GET 查询、POST 新增、PUT 修改、DELETE 删除)

2025-12-12 09:27:34 974

原创 国产数据库技术学习心得:从入门到实战的技术沉淀

AI 大模型高并发推理性能优化是一个系统性工程,需要从硬件、模型、软件等多个层面协同发力。通过本文介绍的优化策略和实践方法,能够有效提升模型的并发处理能力,降低响应延迟。在实际项目中,开发者应根据具体业务场景和资源条件,灵活运用这些技术,打造高效稳定的 AI 服务。

2025-05-24 17:23:21 1325

原创 AI 大模型开发运维避坑指南:从模型训练到线上部署的全链路实践

AI 大模型的开发运维是一个复杂的系统工程,涵盖数据处理、模型训练、评估优化和线上部署等多个环节。每个环节都可能隐藏着各种问题,需要开发者具备扎实的技术功底和丰富的实践经验。通过本文分享的避坑指南和实践方法,希望能帮助大家在 AI 大模型开发运维的道路上少走弯路,高效实现项目目标。

2025-05-24 17:21:26 876

原创 SpringBoot 信创实战:麒麟 V10 + 统信 UOS 全栈适配指南(国产 OS + 数据库 + 中间件企业级落地方案)

传统的模型微调需要对整个大语言模型的参数进行更新,这不仅消耗大量计算资源,还容易导致过拟合。LoRA 另辟蹊径,通过在预训练模型的特定层中插入可训练的低秩矩阵,仅对这些新增的低秩参数进行训练,而冻结预训练模型的原始参数。这种方法大幅减少了需要训练的参数数量,同时保留了预训练模型的知识,实现高效适配。从数学角度来看,假设预训练模型的权重矩阵为\(W\),LoRA 在\(W\)上添加两个低秩矩阵\(A\)和\(B\),将参数更新表示为\(\Delta W = AB^T\)。

2025-05-24 12:58:14 1829

原创 云原生时代如何构建高效可观测性体系

可观测性是指通过系统对外暴露的信息,推断系统内部状态的能力。在云原生场景中,可观测性主要由 ** 指标(Metrics)、日志(Logs)、链路追踪(Traces)** 三大支柱构成。这三大支柱相互补充,指标提供全局视角,日志补充具体细节,链路追踪串联服务调用,共同为系统建立完整的观测体系。

2025-05-23 22:56:02 1682

原创 Vue.js 学习心得:从入门到实战的技术沉淀

而 LoRA(Low-Rank Adaptation,低秩适配)技术通过在预训练模型上添加少量可训练参数,冻结大部分原始参数,在显著降低计算成本的同时,实现与全量微调相近的性能。在实际应用中,可以根据不同的业务场景(如智能客服、文档摘要、代码生成等)灵活调整数据和参数,让大模型更好地服务于你的需求。在人工智能领域,大语言模型(LLM)的应用日益广泛,但通用大模型在特定任务上的表现往往差强人意。本文将深入讲解基于低秩适配(LoRA)技术的大模型高效微调方法,带你从零开始完成一次高质量的模型微调实践。

2025-05-23 22:50:48 686

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除