优化
lyric0221
这个作者很懒,什么都没留下…
展开
-
卷积神经网络中的优化算法比较
卷积神经网络一般力求能够做到 end to end 的训练, end to end 训练也是目前深度学习的主流. 训练中主要采用 Back Propagation 算法, 而 BP 算法是我们早就学过的梯度下降算法的一种实现. 因此, CNN 中的各种优化算法还是在梯度下降算法上面做手脚, 这篇文章的主要目的是总结和比较深度学习中各种常用的优化算法. 这这篇文章中不会涉及到怎么求(偏)导数, 我们转载 2016-10-30 01:30:31 · 4191 阅读 · 0 评论 -
各种优化方法总结比较(sgd/momentum/Nesterov/adagrad/adadelta)
前言这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x,使得f(x)的值最小。本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理。SGDSGD指stochastic gradient descent,即随机梯度下降。是梯度下降的batch版本。对于训练数据集,我们首先将其分成n个batch,每个batch包含m个样本。我们每次转载 2016-10-30 01:34:11 · 555 阅读 · 0 评论 -
分布式深度学习:神经网络的分布式训练
本文编译自 Skymind 的技术博客,作者是深度学习工程师 Alex Black 和 Vyacheslav Kokorin。按照计划,《Distributed Deep Learning》系列文章一共有三篇,本文是其中的第一篇,后续的文章机器之心还将继续跟进。这是关于「神经网络的分布训练」的三篇系列文章中的第一部分。在第一部分,我们将看到如何在 GPU 上用分布式计算大大加速转载 2016-10-30 01:38:22 · 946 阅读 · 1 评论 -
机器学习顶级会议
以下是不完整的列表,但基本覆盖。机器学习顶级会议:NIPS, ICML, UAI, AISTATS; (期刊:JMLR, ML, Trends in ML, IEEE T-NN)计算机视觉和图像识别:ICCV, CVPR, ECCV; (期刊:IEEE T-PAMI, IJCV, IEEE T-IP)人工智能:IJCAI, AAAI; (期刊AI)另外相关的还有SIGRAPH,转载 2016-10-30 02:01:15 · 745 阅读 · 0 评论