【线性代数(9)】矩阵的秩


手动反爬虫: 原博地址

 知识梳理不易,请尊重劳动成果,文章仅发布在CSDN网站上,在其他网站看到该博文均属于未经作者授权的恶意爬取信息

如若转载,请标明出处,谢谢

1 k阶子式和秩的定义

给定一个矩阵,任取k行和k列交叉元素,组成的行列式,就成为k阶子式,比如 A 3 X 4 A_{3X4} A3X4取2阶子式,可以取前两行和后两列,结果如下:(由于只有3行,所以最多有3阶子式)
A = [ 2 , 2 , 2 , 2 3 , 3 , 3 , 2 1 , 1 , 1 , 1 ]      k 2 = ∣ 2 , 2 3 , 2 ∣ A = \left[ \begin{matrix} 2,2,2,2\\3,3,3,2\\1,1,1,1 \end{matrix} \right]\space \space \space \space k_{2}=\begin{vmatrix} 2,2\\3,2\end{vmatrix} A=2,2,2,23,3,3,21,1,1,1    k2=2,23,2然后查看一下示例的这个矩阵可以取得的各阶子式的值

  • 1阶子式的值:方阵中各个元素的值
  • 2阶子式的值:0,0,-2(选择前两行,第一列和其余列的行列式值);0,0,0(取一三行,第一列和其余列的行列式值);0,0,1(取二三行,第一列和其余列的行列式值)
  • 3阶子式的值:0,0,0,0(只有三行,任意取三列,共有四种取法,最后结果都是0)

那么规定非零子式的最高阶数称作:矩阵的秩。比如刚刚的示例矩阵,其3阶子式全为0,所以最高的非零子式只有2阶,故矩阵的秩为2。

规定和性质:

  • 零矩阵的秩为0,也就是r(0) = 0
  • 若矩阵 A m X n A_{mXn} AmXn,则矩阵的秩取值范围为: 0 < = r ( A ) < = m i n { m , n } 0<=r(A)<=min\{m,n\} 0<=r(A)<=min{m,n},若 r ( A ) = m r(A) = m r(A)=m取所有的行,被称为行满秩矩阵;若 r ( A ) = n r(A)=n r(A)=n即是取到了所有的列,被称作为列满秩矩阵;这两种情况都是称作满秩,说明 r ( A ) = m i n { m , n } r(A) =min\{m,n\} r(A)=min{m,n}
  • r ( A ) < m i n { m , n } r(A) < min\{m,n\} r(A)<min{m,n},说明矩阵是降秩矩阵
  • 若A为方阵, A 满 秩    ⟺    A 可 逆    ⟺    ∣ A ∣ ≠ 0 A满秩 \iff A可逆 \iff|A| \not=0 AAA=0

2 矩阵的秩的定理

定理1: r ( A ) = r    ⟺    有 一 个 r 阶 子 式 不 为 0 , 所 有 的 r + 1 阶 均 为 0 r(A) = r \iff 有一个r阶子式不为0,所有的r+1阶均为0 r(A)=rr0r+10(可以通过行列式的展开定理实现证明)

阶梯型矩阵:
1)若有零行,零行在非零行的下面;
2)左起首非零元左边零的个数随行数增加而严格增加
A = [ 1 , 1 , 1 , 1 , 1 0 , 1 , 1 , 1 , 1 0 , 0 , 0 , 1 , 1 0 , 0 , 0 , 3 , 4 0 , 0 , 0 , 0 , 0 ] 这 里 的 A 就 不 属 于 阶 梯 型 矩 阵 , 不 满 足 第 二 点 A = \left[ \begin{matrix} 1,1,1,1,1\\0,1,1,1,1\\0,0,0,1,1 \\ 0,0,0,3,4\\0,0,0,0,0\end{matrix} \right] 这里的A就不属于阶梯型矩阵,不满足第二点 A=1,1,1,1,10,1,1,1,10,0,0,1,10,0,0,3,40,0,0,0,0A
行简化阶梯型:
1)非零行的首非零元是1
2)首非零元所在列的其余元素都是0

A = [ 1 , 0 , 0 , 0 , 1 0 , 1 , 0 , 0 , 1 0 , 0 , 0 , 1 , 1 0 , 0 , 0 , 0 , 0 0 , 0 , 0 , 0 , 0 ] A = \left[ \begin{matrix} 1,0,0,0,1\\0,1,0,0,1\\0,0,0,1,1 \\ 0,0,0,0,0\\0,0,0,0,0\end{matrix} \right] A=1,0,0,0,10,1,0,0,10,0,0,1,10,0,0,0,00,0,0,0,0

由此可以得出一个结论:矩阵的秩还可以用非零行的行数表示,非零行有几行,那么秩就为几

定理2:初等变换不改变矩阵的秩。一般使用初等行变换化为阶梯型

A = [ 1 , − 1 , 2 , 1 , 0 2 , − 2 , 4 , − 2 , 0 3 , 0 , 6 , − 1 , 1 0 , 3 , 0 , 0 , 1 ] ⇒ [ 1 , − 1 , 2 , 1 , 0 0 , 0 , 0 , − 4 , 0 0 , 3 , 0 , − 4 , 1 0 , 3 , 0 , 0 , 1 ] ⇒ [ 1 , − 1 , 2 , 1 , 0 0 , 3 , 0 , − 4 , 1 0 , 0 , 0 , − 4 , 0 0 , 0 , 0 , 0 , 0 ] ⇒ r ( A ) = 3 A = \left[ \begin{matrix} 1,-1,2,1,0\\2,-2,4,-2,0\\3,0,6,-1,1 \\ 0,3,0,0,1\end{matrix} \right] \Rightarrow \left[ \begin{matrix} 1,-1,2,1,0\\0,0,0,-4,0\\0,3,0,-4,1 \\ 0,3,0,0,1\end{matrix} \right] \Rightarrow \left[ \begin{matrix} 1,-1,2,1,0\\0,3,0,-4,1\\0,0,0,-4,0 \\ 0,0,0,0,0\end{matrix} \right] \Rightarrow r(A) = 3 A=1,1,2,1,02,2,4,2,03,0,6,1,10,3,0,0,11,1,2,1,00,0,0,4,00,3,0,4,10,3,0,0,11,1,2,1,00,3,0,4,10,0,0,4,00,0,0,0,0r(A)=3

3 有关秩的性质

  • r ( A ) = r ( A T ) r(A) = r(A^{T}) r(A)=r(AT)
  • 矩阵乘以可逆矩阵,秩不变
  • A m X n A_{mXn} AmXn P P P是m阶可逆方阵, Q Q Q是n阶可逆方阵 ⇒ r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q ) \Rightarrow r(A) = r(PA) = r(AQ) = r(PAQ) r(A)=r(PA)=r(AQ)=r(PAQ),这里使用大白话说就是:矩阵左乘可逆矩阵、右乘可逆矩阵、左右乘可逆矩阵,矩阵的秩不变

哈哈哈,宋老师很皮~
在这里插入图片描述

  • 8
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lys_828

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值