【nlp】2.6 注意力机制Attention

本文介绍了注意力机制在自然语言处理中的应用,详细讲解了注意力计算规则,包括自注意力和一般注意力,并通过seq2seq模型架构解释了其在翻译任务中的作用。注意力机制解决了RNN在处理序列数据时的遗忘问题,提高了模型效率和性能。
摘要由CSDN通过智能技术生成

1 注意力机制介绍

1.1 注意力概念

我们观察事物时,之所以能够快速判断一种事物(当然允许判断是错误的),是因为我们大脑能够很快把注意力放在事物最具有辨识度的部分从而作出判断;而并非是从头到尾的观察一遍事物后,才能有判断结果。正是基于这样的理论,就产生了注意力机制。

1.2 注意力计算规则

它需要三个指定的输入Q(query), K(key), V(value), 然后通过计算公式得到注意力的结果, 这个结果代表query在key和value作用下的注意力表示. 当输入的Q=K=V时, 称作自注意力计算规则;当Q、K、V不相等时称为一般注意力计算规则

例子:生活中的Q, K, V的比喻解释:
在这里插入图片描述

如上图所示, 一个简单的比喻是在档案柜中找文件. 查询向量Query就像一张便利贴, 上面写着你正在研究的课题. 键向量Key像是档案柜中文件夹上贴的标签. 当你找到和便利贴上所写相匹配的文件夹时, 拿出对应的文件夹, 文件夹里的东西便是值向量Value.

将单词的查询向量Query分别乘以每个文件夹的键向量Key,得到各个文件夹对应的注意力得分Score.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lys_828

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值