深度学习-----pytorch环境配置

本文章所用的网站皆是国外,可能会出现无法打开或者打开以及下载缓慢的情况。
1、下载安装Miniconda或者Anaconda

MinicondaAnaconda是同一家公司开发的产品,可以根据自己的喜好安装,当然也可以直接安装python环境。可以直接下载可运行文件,下载完后双击运行,在安装时可以给所有用户安装,会自动配置环境变量。(本人只使用过Anaconda和python环境,以下我将以Anaconda说明)

2、安装虚拟环境

安装完Anaconda后,会有一个base环境,不要在这这环境下去下载相关的包,下载包过多很容易出现版本冲突的问题。我们可以在菜单栏中选择多有应用,找到anaconda的文件,下面有一个Anaconda Prompt,双击运行。

  

打开之后会直接进入默认环境(base),我们开始创建虚拟环境

创建虚拟环境,tensorflow是我虚拟环境的名称,可以自己设置,python的版本也可以自己选择
建议安装3.8或者3.9的版本
conda create -n pytorch python=3.9 pip
查看虚拟环境
conda info -e
激活环境,激活成功后,base会变成你创建的虚拟环境的名字
activate tensorflow
卸载虚拟环境
conda remove -n tensorflow --all

3、安装pytorch环境
win+R打开cmd,查看gpu相关信息
在终端中输入下面命令
nvidia-smi
然后到pytorch官网https://pytorch.org/get-started/locally/
按照自己虚拟环境的python版本,选择响应的版本,conda和pip都可
要记住自己所选的cuda版本,在下载cuda的时候需要下载相应版本
如果电脑所支持的版本过低,可以先更新显卡驱动,更新完之后版本会变高
我们复制最下面的命令,到刚刚下载的虚拟环境中运行命令
选择pip会自动下载相关的依赖包,但是conda命令不会,所以建议使用pip命令
我选择的是pip cuda11.8
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

4、安装cuda环境
我们去cuda官网下载cuda
https://developer.nvidia.com/cuda-toolkit-archive
根据自己选择的cuda版本下载
下载完成后,一切默认安装就行
安装结束,就完成pytorch的安装
下面会介绍pycharm以及jupyternotebook的相关配置

5、pycharm配置

打开pycharm,选择自定义,选择所有设置。选择python解释器,点击右侧的添加解释器,添加本地解释器。如果使用Anaconda选择conda环境,如果下载的python可以选择python解释器。在使用现有环境中选择我们安装的虚拟环境。

 6、jupyter notebook安装配置
在Anaconda prompt中切换到我们所使用的虚拟环境
运行下面命令下载
pip install jupyter
下载完成后,使用命令运行jupyter
jupyter notebook
启动完成后,选择红框中的其中一个链接在浏览器中打开

修改jupyter的根目录
配置文件默认位置是在C:\Users\自己的用户名\.jupyter文件中的jupyter_notebook_config.py文件
也可以在虚拟环境中运行命令查看
jupyter notebook --generate-config
使用记事本打开
可以搜索  c.ServerApp.root_dir  (新版本跟老版本不一样)
如果搜索不到可以搜索  The directory to use for notebooks and kernels.
将注释符删除,添加自己文件的路径即可,重新启动jupyter

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值