算法总结:连续子串

博客详细介绍了如何解决求连续子串满足特定条件的问题,例如数组中连续子数组中数字出现次数不超过k的情况,以及寻找长度大于3的连续等差数列。通过动态规划的方法,分别举例说明了以每个元素为结尾的满足条件的子数组,并给出实现代码,揭示了状态转移方程在优化求解过程中的作用。
摘要由CSDN通过智能技术生成

求子串满足某一条件的问题一般可以转化为先求以第i(0 < i <=n)个元素结尾满足该条件的解,然后将所有解加起来即可得到原问题的解。正是因为我们将以每个元素作为结尾来定义解,所以可以包含所有解,并且不会重复

例子

求一个数组中连续子数组中任何数字出现次数不大于k的所有子数组
1 2 2 4
1
答案是6
1、2、2、4、1 2、2 4

要求出所有满足条件的子数组,只要求出以nums[i]结尾的满足条件的所有数组长度的和。用上面的例子说明一下:

当 i = 0 时以1结尾的满足条件的数组长度是1,满足条件的子数组是[1]
当 i = 1 时以2结尾的满足条件的数组长度是2 即[1, 2],满足条件的子数组是[2]、[1, 2]
当 i = 2 时以2结尾的满足条件的数组长度是1 即[2],满足条件的子数组是[2](这个2和i=1时的2不是一个2,没有重复)
当 i = 3 时以4结尾的满足条件的数组长度是2 即[2,4],满足条件的子数组是[4]、[2, 4]

实现代码

#include <iostream>
#include <unordered_map>
#include <vector>
#include <algorithm>

using namespace std;

int main(int argc, char const
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值