大语言模型(LLM)在人工智能领域取得了显著进展,但仍存在一些局限性。通过不同的方法和技术,我们可以显著增强其性能,使其更好地服务于人类社会。本文将介绍五种增强LLM能力的方法,包括检索增强生成(RAG)、提示(Prompting)、思维链(Chain of Thought,CoT)、少样本学习(Few-Shot Learning,FSL)以及从人类反馈中强化学习(Reinforcement Learning from Human Feedback,RLHF),希望对大家有所帮助。
一、检索增强生成(RAG)
检索增强生成(Retrieval-Augmented Generation RAG )是一种利用外部知识库来增强LLM响应能力的方法([RAG(Retrieval Augmented Generation)及衍生框架:CRAG、Self-RAG与HyDe的深入探讨]。该方法将LLM与外部知识库相结合,通过检索和生成两个步骤来提高LLM的准确性和全面性。
1. 检索阶段
在检索阶段,LLM根据输入查询在知识库中搜索相关文档。这一步骤的关键在于如何设计高效的检索算法([检索增强思考 RAT(RAG+COT):提升 AI 推理能力的强大组合],以便在庞大的知识库中快速找到与查询相关的文档。为了实现这一目标,通常需要使用先进的自然语言处理技术和信息检索算法。
2. 生成阶段
在生成阶段,LLM利用检索到的信息来生成响应。这一阶段的核心在于如何将检索到的信息与查询相结合,以产生准确且连贯的响应。为了实现这一目标,通常需要使用生成式语言模型(如GPT系列)来合成信息。
RAG方法的应用场景非常广泛,特别是在需要实时信息检索的领域,如新闻推荐、问答系统等。通过引入外部知识库,RAG方法能够显著提高LLM的响应质量和准确性,从而增强其在实际应用中的性能([Astute RAG(Retrieval-Augmented Generation):LLM信息检索与利用的新思路。
二、提示(Prompting)
提示是一种通过“与模型对话”来增强其能力的方法。通过向LLM提供明确、具体的指示和思路,我们可以引导其产生更符合预期的响应。
1. 提示设计
提示设计是Prompting方法的核心。一个好的提示应该能够清晰地传达我们的意图和需求,同时激发LLM的潜能。为了实现这一目标,我们需要对LLM的工作原理和特性有深入的了解,以便设计出有效的提示([Prompt实战:解锁五大高级Prompt技巧]。
2. 反馈与迭代
Prompting方法是一个迭代的过程。我们需要根据LLM的响应来调整和优化提示,以便获得更好的结果。这一过程需要耐心和细心,因为每个LLM的特性和性能都有所不同,需要针对性地进行调整。
Prompting方法的应用场景非常广泛,特别是在需要精细控制LLM输出的领域,如文本生成、对话系统等。通过设计合理的提示([一些优秀的 Prompt 库:提升 AI 工具使用效率与创造力],我们可以引导LLM产生更加符合人类期望的响应,从而增强其在实际应用中的表现。
三、思维链(Chain of Thought,CoT)
思维链([Chain-of-Thought (CoT):引导大型语言模型解决问题的有效策略]是一种通过逐步推理来增强LLM解决问题能力的方法。该方法通过引导LLM按照特定的步骤进行思考和推理,从而使其能够更准确地解决复杂问题。
1. 步骤分解
在CoT方法中,我们需要将复杂问题分解为一系列简单的步骤。每个步骤都应该具有明确的目标和解决方案,以便LLM能够逐步解决问题。
2. 逐步推理
在逐步推理的过程中,LLM需要按照分解的步骤进行思考和推理。每个步骤的推理结果都应该作为下一步的输入,以便形成完整的思维链。
CoT方法的应用场景主要集中在需要逻辑推理和复杂计算的领域,如数学解题、逻辑推理等。通过引导LLM按照思维链进行推理,我们可以显著提高其解决问题的准确性和效率。
# Without CoT
Prompt:
"
A fruit seller has fixed costs of $30,000 and costs of $5 for each apple sold.
They sell 4,000 apples. Let’s figure out the total costs.
"
Response:
"The total cost is $55,000."
# Error: The response is incorrect.
# With Cot
Prompt:
"
A fruit seller has fixed costs of $30,000 and costs $5 for each apple sold.
They sell 4,000 apples. Let's use a step-by-step approach to find the total costs.
First, calculate the total cost of the apples sold.
Then, add this to the fixed costs to get the total costs.
"
Response:
"
Step 1: "Calculate the total cost for selling the apples: 4,000 apples * $5."
Step 2: "Now, let's do the multiplication: 4,000 * 5 = 20,000."
Step 3: "Next, add the fixed costs to the variable costs: $30,000 (fixed costs) + $20,000 (cost of apples)."
Step 4: "So, $30,000 + $20,000 = $50,000."
Final Answer: "Therefore, the total costs are $50,000."
"
四、少样本学习(Few-Shot Learning,FSL)
少样本学习是一种通过提供少量示例来增强LLM泛化能力的方法。该方法通过让LLM学习如何根据少量示例来推断新任务的解决方案,从而使其能够在没有大量训练数据的情况下进行有效的推理和预测。
1. 示例选择
在FSL方法中,示例的选择至关重要。我们需要选择具有代表性和多样性的示例,以便LLM能够从中学习到有效的推理策略。
2. 推理过程
在推理过程中,LLM需要根据提供的示例来推断新任务的解决方案。这一过程需要LLM具备强大的推理能力和泛化能力,以便能够在不同的场景下进行有效的推理和预测。
FSL方法的应用场景非常广泛,特别是在需要快速适应新任务的领域,如图像分类、自然语言理解等。通过提供少量示例,我们可以让LLM快速学习如何完成新任务,从而显著提高其泛化能力和适应性。
Prompt:
“Translate the sentence into Spanish:
I love to read books.
Translation: Me encanta leer libros.
It is a beautiful day.
Translation: Es un día hermoso.
Now, translate this: The sun is shining.”
Response:
“Translation: El sol brilla.”
五、从人类反馈中强化学习(Reinforcement Learning from Human Feedback, RLHF)
RLHF是一种将人类偏好融入LLM训练过程的方法。通过收集人类对模型输出的反馈,并将其转化为可量化的训练信号,可以不断优化模型的性能。这种方法使得模型能够更好地理解人类需求和期望,从而生成更符合人类价值观的响应。RLHF不仅提高了模型的实用性,还增强了其社会接受度。
What are some good ways to improve focus while studying?
Answer 1: Consider incorporating short breaks into your study routine, ideally every hour, and drink plenty of water to stay refreshed.
Answer 2: Take regular breaks, stay hydrated, limit distractions by turning off your phone, and try the Pomodoro method for better focus.
Note: If I ask you to rank how good each response is on a scale from 1 to 5, the benchmark might differ and be inconsistent. Thus, doing a pairwise comparison (which do you prefer) would be ideal.
六、方法综合应用与比较
1、综合应用案例
在实际应用中,这些方法往往不是孤立使用的。例如,在一个智能问答系统中,可以同时使用 RAG 来获取准确的知识,利用提示来引导模型的回答方向,通过思维链提高推理能力,结合少样本学习让模型更快地适应新问题类型,并借助人类反馈强化学习不断优化模型的输出,使其更符合用户的期望。
2、方法比较
1)RAG 侧重于利用外部知识解决知识局限性和幻觉问题;提示更注重与模型的有效沟通;思维链聚焦于提高推理能力;少样本学习强调通过少量示例让模型学习新任务;人类反馈强化学习则突出从人类的主观偏好中学习。
2)从应用难度来看,提示和少样本学习相对容易实施,RAG 需要构建和维护知识库,思维链需要合理设计引导步骤,人类反馈强化学习则需要有效的人类反馈收集机制。
3)在效果方面,不同方法对不同类型的任务有不同的提升效果。例如,对于需要大量知识的问题,RAG 可能效果显著;对于需要推理的问题,思维链可能更有优势;对于新任务的快速适应,少样本学习可能表现更好;对于符合人类期望的输出,人类反馈强化学习是关键。
检索增强生成、提示、思维链、少样本学习以及人类反馈强化学习等方法都为增强 LLM 的能力提供了有效的途径。这些方法各有其独特的原理、目的和应用场景,在实际应用中可以根据具体的任务需求和条件进行综合运用。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓