彻底搞懂 Spring Cloud 前世今生 系列之 第⼀代 Spring Cloud 核⼼组件 — Hystrix熔断器

Hystrix熔断器

属于⼀种容错机制

微服务中的雪崩效应

什么是微服务中的雪崩效应呢?

微服务中,⼀个请求可能需要多个微服务接⼝才能实现,会形成复杂的调⽤链路。
在这里插入图片描述
在这里插入图片描述

  • 扇⼊:代表着该微服务被调⽤的次数,扇⼊⼤,说明该模块复⽤性好
  • 扇出:该微服务调⽤其他微服务的个数,扇出⼤,说明业务逻辑复杂
    扇⼊⼤是⼀个好事,扇出⼤不⼀定是好事

在微服务架构中,⼀个应⽤可能会有多个微服务组成,微服务之间的数据交互通过远程过程调⽤完成。这就带来⼀个问题,假设微服务A调⽤微服务B和微服务C,微服务B和微服务C⼜调⽤其它的微服务,这就是所谓的“扇出”。如果扇出的链路上某个微服务的调⽤响应时间过⻓或者不可⽤,对微服务A的调⽤就会占⽤越来越多的系统资源,进⽽引起系统崩溃,所谓的“雪崩效应”。

如图中所示,最下游简历微服务响应时间过⻓,⼤量请求阻塞,⼤量线程不会释放,会导致服务器资源耗尽,最终导致上游服务甚⾄整个系统瘫痪。

雪崩效应解决⽅案

从可⽤性可靠性着想,为防⽌系统的整体缓慢甚⾄崩溃,采⽤的技术⼿段;
下⾯,我们介绍三种技术⼿段应对微服务中的雪崩效应,这三种⼿段都是从系统可⽤性、可靠性⻆度出发,尽量防⽌系统整体缓慢甚⾄瘫痪。

  • 服务熔断
    熔断机制是应对雪崩效应的⼀种微服务链路保护机制。我们在各种场景下都会接触到熔断这两个字。⾼压电路中,如果某个地⽅的电压过⾼,熔断器就会熔断,对电路进⾏保护。股票交易中,如果股票指数过⾼,也会采⽤熔断机制,暂停股票的交易。同样,在微服务架构中,熔断机制也是起着类似的作⽤。当扇出链路的某个微服务不可⽤或者响应时间太⻓时,熔断该节点微服务的调⽤,进⾏服务的降级,快速返回错误的响应信息。当检测到该节点微服务调⽤响应正常后,恢复调⽤链路。
    注意:

    • 服务熔断重点在**“断”**,切断对下游服务的调⽤
    • 服务熔断和服务降级往往是⼀起使⽤的,Hystrix就是这样。
  • 服务降级
    通俗讲就是整体资源不够⽤了,先将⼀些不关紧的服务停掉(调⽤我的时候,给你返回⼀个预留的值,也叫做兜底数据),待渡过难关⾼峰过去,再把那些服务打开。

    服务降级⼀般是从整体考虑,就是当某个服务熔断之后,服务器将不再被调⽤,此刻客户端可以⾃⼰准备⼀个本地的fallback回调,返回⼀个缺省值,这样做,虽然服务⽔平下降,但好⽍可⽤,⽐直接挂掉要强。

  • 服务限流
    服务降级是当服务出问题或者影响到核⼼流程的性能时,暂时将服务屏蔽掉,待⾼峰或者问题解决后再打开;但是有些场景并不能⽤服务降级来解决,⽐如秒杀业务这样的核⼼功能,这个时候可以结合服务限流来限制这些场景的并发/请求量

    限流措施也很多,⽐如

    • 限制总并发数(⽐如数据库连接池、线程池)
    • 限制瞬时并发数(如nginx限制瞬时并发连接数)
    • 限制时间窗⼝内的平均速率(如Guava的RateLimiter、nginx的limit_req模块,限制每秒的平均速率)
    • 限制远程接⼝调⽤速率、限制MQ的消费速率等

Hystrix简介

[来⾃官⽹] Hystrix(豪猪----->刺),宣⾔“defend your app”是由Netflix开源的⼀个延迟和容错库,⽤于隔离访问远程系统、服务或者第三⽅库,防⽌级联失败,从⽽提升系统的可⽤性与容错性。
Hystrix主要通过以下⼏点实现延迟和容错。

  • 包裹请求:使⽤HystrixCommand包裹对依赖的调⽤逻辑。 ⾃动投递微服务⽅法
    (@HystrixCommand 添加Hystrix控制) ——调⽤简历微服务
  • 跳闸机制:当某服务的错误率超过⼀定的阈值时,Hystrix可以跳闸,停⽌请求该服务⼀段时间。
  • 资源隔离:Hystrix为每个依赖都维护了⼀个⼩型的线程池(舱壁模式)(或者信号量)。如果该线程池已满, 发往该依赖的请求就被⽴即拒绝,⽽不是排队等待,从⽽加速失败判定。
  • 监控:Hystrix可以近乎实时地监控运⾏指标和配置的变化,例如成功、失败、超时、以及被拒绝的请求等。
  • 回退机制:当请求失败、超时、被拒绝,或当断路器打开时,执⾏回退逻辑。回退逻辑由开发⼈员⾃⾏提供,例如返回⼀个缺省值。
  • ⾃我修复:断路器打开⼀段时间后,会⾃动进⼊“半开”状态。

Hystrix舱壁模式(线程池隔离策略)

在这里插入图片描述
如果不进⾏任何设置,所有熔断⽅法使⽤⼀个Hystrix线程池(10个线程),那么这样的话会导致问题,这个问题并不是扇出链路微服务不可⽤导致的,⽽是我们的线程机制导致的,如果⽅法A的请求把10个线程都⽤了,⽅法2请求处理的时候压根都没法去访问B,因为没有线程可⽤,并不是B服务不可⽤。
在这里插入图片描述
为了避免问题服务请求过多导致正常服务⽆法访问,Hystrix 不是采⽤增加线程数,⽽是单独的为每⼀个控制⽅法创建⼀个线程池的⽅式,这种模式叫做“舱壁模式",也是线程隔离的⼿段。

Hystrix⼯作流程与⾼级应⽤

在这里插入图片描述

  1. 当调⽤出现问题时,开启⼀个时间窗(10s)
  2. 在这个时间窗内,统计调⽤次数是否达到最⼩请求数?
    • 如果没有达到,则重置统计信息,回到第1步
    • 如果达到了,则统计失败的请求数占所有请求数的百分⽐,是否达到阈值?
    • 如果达到,则跳闸(不再请求对应服务)
    • 如果没有达到,则重置统计信息,回到第1步 3)
  3. 如果跳闸,则会开启⼀个活动窗⼝(默认5s),每隔5s,Hystrix会让⼀个请求通过,到达那个问题服务,看 是否调⽤成功,如果成功,重置断路器回到第1步,如果失败,回到第3步
/**
* 8秒钟内,请求次数达到2个,并且失败率在50%以上,就跳闸
* 跳闸后活动窗⼝设置为3s
*/
@HystrixCommand(
commandProperties = {
	@HystrixProperty(name =
		"metrics.rollingStats.timeInMilliseconds",value = "8000"),
	@HystrixProperty(name =
		"circuitBreaker.requestVolumeThreshold",value = "2"),
	@HystrixProperty(name =
		"circuitBreaker.errorThresholdPercentage",value = "50"),
	@HystrixProperty(name =
		"circuitBreaker.sleepWindowInMilliseconds",value = "3000")
 )

我们上述通过注解进⾏的配置也可以配置在配置⽂件中

# 配置熔断策略:
hystrix:
 command:
   default:
     circuitBreaker:
		# 强制打开熔断器,如果该属性设置为true,强制断路器进⼊打开状态,将会拒绝所有的请求。 默认false关闭的
 		forceOpen: false
		# 触发熔断错误⽐例阈值,默认值50%
 		errorThresholdPercentage: 50
		# 熔断后休眠时⻓,默认值5秒
		sleepWindowInMilliseconds: 3000 
		# 熔断触发最⼩请求次数,默认值是20
 		requestVolumeThreshold: 2 
 	execution:
		isolation:
 		  thread:
			# 熔断超时设置,默认为1秒
 			timeoutInMilliseconds: 2000

基于springboot的健康检查观察跳闸状态(⾃动投递微服务暴露健康检查细节)

# springboot中暴露健康检查等断点接⼝
management:
  endpoints:
    web:
      exposure:
      include: "*"
 # 暴露健康接⼝的细节
 endpoint:
   health:
     show-details: always

访问健康检查接⼝:http://localhost:8090/actuator/health

  • hystrix正常⼯作状态
    在这里插入图片描述
  • 跳闸状态
    在这里插入图片描述
  • 活动窗⼝内⾃我修复
    在这里插入图片描述

Hystrix Dashboard断路监控仪表盘

正常状态是UP,跳闸是⼀种状态CIRCUIT_OPEN,可以通过/health查看,前提是⼯程中需要引⼊SpringBoot的actuator(健康监控),它提供了很多监控所需的接⼝,可以对应⽤系统进⾏配置查看、相关功能统计等。

如果我们想看到Hystrix相关数据,⽐如有多少请求、多少成功、多少失败、多少降级等,那么引⼊SpringBoot健康监控之后,访问/actuator/hystrix.stream接⼝可以获取到监控的⽂字信息,但是不直观,所以Hystrix官⽅还提供了基于图形化的DashBoard(仪表板)监控平 台。Hystrix仪表板可以显示每个断路器(被@HystrixCommand注解的⽅法)的状态。
在这里插入图片描述

  1. 新建⼀个监控服务⼯程,导⼊依赖
	<!--hystrix-->
	<dependency> 
		<groupId>org.springframework.cloud</groupId> 
		<artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
	</dependency>
	<!--hystrix 仪表盘-->
	<dependency>
		<groupId>org.springframework.cloud</groupId> 
		<artifactId>spring-cloud-starter-netflix-hystrix-dashboard</artifactId>
	</dependency> 
	<dependency> 
		<groupId>org.springframework.cloud</groupId> 
		<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
	</dependency>
  1. 启动类添加@EnableHystrixDashboard激活仪表盘

    @SpringBootApplication
    @EnableHystrixDashboard // 开启hystrix dashboard
    public class HystrixDashboardApplication9000 {
    	public static void main(String[] args) {
    		SpringApplication.run(HystrixDashboardApplication.class, args);
    	} 
    }
    
  2. application.yml

server:
 port: 9000
Spring:
 application:
   name: learn-cloud-hystrix-dashboard
eureka:
 client:
   serviceUrl: # eureka server的路径
     defaultZone: http://learncloudeurekaservera:8761/eureka/,http://learncoudeurekaserverb:8762/eureka/ #把 eureka 集群中的所有 url 都填写了进来,也可以只写⼀台,因为各个 eurekaserver 可以同步注册表
 instance: 
   #使⽤ip注册,否则会使⽤主机名注册了(此处考虑到对⽼版本的兼容,新版本经过实验都是ip)
   prefer-ip-address: true
  #⾃定义实例显示格式,加上版本号,便于多版本管理,注意是ip-address,早期版本是ipAddress
   instance-id: ${spring.cloud.client.ipaddress}:${spring.application.name}:${server.port}:@project.version@
  1. 在被监测的微服务中注册监控servlet(⾃动投递微服务,监控数据就是来⾃于这个微服务)
    在这里插入图片描述

    被监控微服务发布之后,可以直接访问监控servlet,但是得到的数据并不直观,后期可以结合仪表盘更友好的展示
    在这里插入图片描述

  2. 访问测试http://localhost:9000/hystrix
    在这里插入图片描述
    输⼊监控的微服务端点地址,展示监控的详细数据,⽐如监控服务消费者http://localhost:8090/actuator/hystrix.stream
    在这里插入图片描述
    百分⽐,10s内错误请求百分⽐
    实⼼圆:

    • ⼤⼩:代表请求流量的⼤⼩,流量越⼤球越⼤
    • 颜⾊:代表请求处理的健康状态,从绿⾊到红⾊递减,绿⾊代表健康,红⾊就代表很不健康

    曲线波动图:
    记录了2分钟内该⽅法上流量的变化波动图,判断流量上升或者下降的趋势

Hystrix Turbine聚合监控

之前,我们针对的是⼀个微服务实例的Hystrix数据查询分析,在微服务架构下,⼀个微服务的实例往往是多个(集群化)
⽐如⾃动投递微服务
实例1(hystrix) ip1:port1/actuator/hystrix.stream
实例2(hystrix) ip2:port2/actuator/hystrix.stream
实例3(hystrix) ip3:port3/actuator/hystrix.stream
按照已有的⽅法,我们就可以结合dashboard仪表盘每次输⼊⼀个监控数据流url,进去查看

⼿⼯操作能否被⾃动功能替代?Hystrix Turbine聚合(聚合各个实例上的hystrix监控数据)监控
Turbine(涡轮)

思考:微服务架构下,⼀个微服务往往部署多个实例,如果每次只能查看单个实例的监控,就需要经常切换很不⽅便,在这样的场景下,我们可以使⽤ Hystrix Turbine 进⾏聚合监控,它可以把相关微服务的监控数据聚合在⼀起,便于查看。
在这里插入图片描述
Turbine服务搭建

  1. 新建项⽬learn-cloud-hystrix-turbine-9001,引⼊依赖坐标

    <dependencies>
    	<!--hystrix turbine聚合监控-->
    	<dependency> 
    		<groupId>org.springframework.cloud</groupId> 
    		<artifactId>spring-cloud-starter-netflix-turbine</artifactId>
    	</dependency>
    	<!--
    	引⼊eureka客户端的两个原因
    	1、微服务架构下的服务都尽量注册到服务中⼼去,便于统⼀管理
    	2、后续在当前turbine项⽬中我们需要配置turbine聚合的服务,⽐如,我们希望聚合
    	learn-service-autodeliver这个服务的各个实例的hystrix数据流,那随后
    	我们就需要在application.yml⽂件中配置这个服务名,那么turbine获取服务下具
    	体实例的数据流的
    	时候需要ip和端⼝等实例信息,那么怎么根据服务名称获取到这些信息呢?
    	当然可以从eureka服务注册中⼼获取
    	-->
    	<dependency> 
    		<groupId>org.springframework.cloud</groupId> 
    		<artifactId>spring-cloud-starter-netflix-eurekaclient</artifactId>
    	</dependency>
    </dependencies>
    
  2. 将需要进⾏Hystrix监控的多个微服务配置起来,在⼯程application.yml中开启Turbine及进⾏相关配置

    server:
     port: 9001
    Spring:
     application:
       name: learn-cloud-hystrix-turbine
    eureka:
      client:
        serviceUrl: # eureka server的路径
          #把 eureka 集群中的所有 url 都填写了进来,也可以只写⼀台,因为各个 eurekaserver 可以同步注册表
          defaultZone: http://learnloudeurekaservera:8761/eureka/,http://learncloudeurekaserverb:8762/eureka/ 
        instance: 
          #使⽤ip注册,否则会使⽤主机名注册了(此处考虑到对⽼版本的兼容,新版本经过实验都是ip)
          prefer-ip-address: true
    #⾃定义实例显示格式,加上版本号,便于多版本管理,注意是ip-address,早期版本是ipAddress
         instance-id: ${spring.cloud.client.ipaddress}:${spring.application.name}:${server.port}:@project.version@
    #turbine配置
    turbine:
      # appCofing配置需要聚合的服务名称,⽐如这⾥聚合⾃动投递微服务的hystrix监控数据
      # 如果要聚合多个微服务的监控数据,那么可以使⽤英⽂逗号拼接,⽐如 a,b,c
      appConfig: learn-service-autodeliver
      clusterNameExpression: "'default'" # 集群默认名称
    
  3. 在当前项⽬启动类上添加注解@EnableTurbine,开启仪表盘以及Turbine聚合
    在这里插入图片描述
    4.浏览器访问Turbine项⽬,http://localhost:9001/turbine.stream,就可以看到监控数据了
    在这里插入图片描述
    我们通过dashboard的⻚⾯查看数据更直观,把刚才的地址输⼊dashboard地址栏
    在这里插入图片描述
    在这里插入图片描述

Hystrix核⼼源码剖析

springboot装配、⾯向切⾯编程、RxJava响应式编程的知识等等,我们剖析下主体脉络。
分析⼊⼝:@EnableCircuitBreaker注解激活了熔断功能,那么该注解就是Hystrix源码追踪的⼊⼝。

  • @EnableCircuitBreaker注解激活熔断器
    在这里插入图片描述
  • 查看EnableCircuitBreakerImportSelector类
    在这里插入图片描述
  • 继续关注⽗类 SpringFactoryImportSelector
    在这里插入图片描述
    在这里插入图片描述
  • spring.factories⽂件内容如下
    在这里插入图片描述
  • 会注⼊org.springframework.cloud.netflix.hystrix.HystrixCircuitBreakerConfiguration
    在这里插入图片描述
  • 关注切⾯:com.netflix.hystrix.contrib.javanica.aop.aspectj.HystrixCommandAspect
    在这里插入图片描述
  • 重点分析环绕通知⽅法
    在这里插入图片描述
    GenericCommand中根据元数据信息重写了两个很核⼼的⽅法,⼀个是run⽅法封装了对原始⽬标⽅法的调⽤,另外⼀个是getFallBack⽅法,它封装了对回退⽅法的调⽤
    另外,在GenericCommand的上层类构造函数中会完成资源的初始化,⽐如线程池
    GenericCommand —>AbstractHystrixCommand—>HystrixCommand—>AbstractCommand
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 接下来回到环绕通知⽅法那张截图
    在这里插入图片描述
  • 进⼊execute执⾏这⾥
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 另外,我们观察,GenericCommand⽅法中根据元数据信息等重写了run⽅法(对⽬标⽅法的调⽤),getFallback⽅法(对回退⽅法的调⽤),在RxJava处理过程中会完成对这两个⽅法的调⽤。
    在这里插入图片描述
    在这里插入图片描述
评论 41
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Captain Leo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值