leetcode 链接 :https://leetcode.com/problems/majority-element-ii/
题目
Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋
times. The algorithm should run in linear time and in O(1) space.
简要翻译:
就是给定一个含有n个数的数组,找到所有出现次数大于⌊ n/3 ⌋次的数。算法要求线性时间复杂度O(N),空间复杂度O(1).
此题如果采用先排序在去查找的话,显然是不能满足时间复杂度的,因为基于比较的排序最快也要O(N*logN)
根据我的上一篇博客(http://blog.csdn.net/lyy_hit/article/details/47616641)的解题思路,我们是可以在O(N)的时间复杂度解决问题的。
首先我们要分析,到底有几个数是满足条件的。很显然可能的情况就是0或1或2个数,为什么大于3就不行呢? 根据反正法是可以证明的,此处省略
在实现的过程中呢,我们可以假设存在两个数是满足条件的,用两个临时变量来存储,找到这两个数之后,因为可以证明若存在,必定就是临时变量存储的这两个数。因此我们可以再次遍历一次数组来统计出现的次数,若满足条件则是所要找的数,若不满足则不是。
代码实现如下:
package com.easy;
import java.util.ArrayList;
import java.util.List;
public class MajorityElementII
{
public static void main(String[] args)
{
// TODO Auto-generated method stub
int []nums = {2, 2};//{-1, 1, 1, 1, 2, 1};//{1, 3, 1, 2, 3, 4, 2, 2, 3, 3, 2};
List<Integer> list = majorityElement(nums);
for (int i = 0; i < list.size(); i++)
{
System.out.println(list.get(i));
}
}
public static List<Integer> majorityElement(int[] nums) {
List<Integer> list = new ArrayList<Integer>();
int A = 0, B = 0;
int cntA = 0, cntB = 0;
for (int i = 0; i < nums.length; i++)
{
if (cntA == 0 && cntB == 0)
{
A = nums[i]; cntA++;
}else if (cntA > 0 && cntB == 0)
{
if (A != nums[i])
{
B = nums[i]; cntB++;
}else
{
cntA++;
}
}else if (cntA == 0 && cntB > 0)
{
if (B != nums[i])
{
A = nums[i]; cntA++;
}else
{
cntB++;
}
}else
{
if (A == nums[i])
{
cntA++;
}else if (B == nums[i])
{
cntB++;
}else
{
cntA--; cntB--;
}
}
// System.out.println("A = "+A+" cntA = " + cntA + " B = " + B + " cntB = " + cntB);
}
if (cntA > 0)
{
cntA = 0;
for (int i = 0; i < nums.length; i++)
{
if (A == nums[i])
{
cntA++;
}
}
if (cntA > nums.length/3)
{
list.add(A);
}
}
if (cntB > 0)
{
cntB = 0;
for (int i = 0; i < nums.length; i++)
{
if (B == nums[i])
{
cntB++;
}
}
if (cntB > nums.length/3)
{
list.add(B);
}
}
return list;
}
}
ps:在实现过程中要注意分情况,不能漏掉任何一种情况