Hanchuan Peng1, Phuong Chung, Fuhui Long, Lei Qu, Arnim Jenett, Andrew M. Seeds, Eugene W. Myers2, and Julie H. Simpson2 Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA, 20147, USA
概要
BrainAligner是一款程序,给定预先标记好的目标脑图后,其可以在实验脑图中自动找到对应的标记,并通过变形将实验用例映射到配准系统中。
引言
具体的神经元类型可以采用抗体检测以及基因方法进行标记,例如GAL4转录基因可以使荧光剂在不同的神经元亚群中表现出来。
对于果蝇3D脑图的计算校准、对齐有如下好处:
1、大量相同标记脑图的自动对齐允许我们对之前的刻板印象做出评估:标识的神经元在不同 个体中有多少模式上的表现以及形状的差异。
2、对齐具有不同抗体或者GAL4模式的脑图揭露了可以被用于基因交叉学研究的重叠区域或者有特殊表现的区域。
3、对比对齐的神经表现模式表明了神经回路的连通性。
4、对齐含有大量GAL4表现的图像可以估计在不同脑区中神经覆盖了多少。
5、对于可能在GAL4采集中对神经活动的破坏,准确的图像对齐是检测脑中与行为表型相关的解剖学特征的先决条件。
早期的3D图像标记主要基于表面以及基于landmark得到对齐策略,主要的缺点是消耗大量的人力划分表面的时间成本以及可能的人为错误。
本文研究中,开发了一种自动标记程序,BrainAligner用于果蝇脑图和配准具有不同神经表现模式的大型3D LSM(laser scanning microscope)图像配准。主要基于图像中可靠landmark的检测。
结论
pattern channel:脑图中表达GFP(绿色荧光蛋白)的各种神经亚群。
reference channel:脑图中用nc82进行标记,用于检查无处不在的神经突触前的部分,并标记了整个神经网状结构。
对于每个实验脑图,BrainAligner采用非线性的几何翘曲(nonlinear geometrical warp),将reference channel映射到标准的目标脑图图像。使用相同的转换,pattern channel也被翘曲或者说变换到目标图像上。
BrainAligner将实验用例配准到目标上使用的是全局3D仿射变换,随后是非线性的3D对齐。
全局对齐中,我们按顺序优化了从实验用例仿射变换至目标后的位置、缩放和旋转参数来最大化两幅图像之间的体素灰度关联。
局部对齐步骤中,我们设计了RLM(reliable landmark matching)算法以检查目标-实验对中的3D特征点。对于目标脑图,人工定义了172个landmarks,分别对应于拐角或者边界上的点,往往是神经网状结构中突然的图像变化。
对于每个目标landmark,RLM首先在目标landmark附近的小区域内运用最大化例如mutual information、inverse intensity difference、correlation以及similarity of invariant image moments这些匹配标准来寻找实验用例图像中的匹配landmark。当满足这些标准的最佳的匹配点集合(可能不止1个匹配点)相距不超过5的体素时,RLM会报告一个初始的landmark匹配(pre-LM),这些pre-LMs可能会违反光滑性的约束,但是它们应该接近单一的全局仿射变换,并且也要保护relative location relationships。因此PLM使用一个随机采样共识算法(random sample consensus,RANSAC)以移除pre-LMs中相对于全局仿射变换最少的超出范围的点(outliers)。
接下来,RLM会选择性的查看剩余的pre-LM,并检查对应于每个由另外三个相邻匹配点形成的四面体是否有违反relative location relationships(我的理解是可能存在共面的情况,后面的图像中表示可能会出现landmarks的位置变化,这是不能接受的)。pre-LM对中,和相邻点明显造成了空间扭曲会被移除。此时,剩余的landmarks被称为reliable landmarks。