PyTorch
pytorch
lyz21
这个作者很懒,什么都没留下…
展开
-
Pytorch可视化神经网络热力图
from PIL import Imageimport torchimport torchvision.transforms as transformsimport numpy as npimport matplotlib.pyplot as pltimport cv2def draw_CAM(model,img_path,save_path,resize=227,isSave=False,isShow=False): # 图像加载&预处理 img=Image.open原创 2021-02-17 17:04:16 · 7790 阅读 · 3 评论 -
Pytorch自动求梯度详解
自动求梯度Tensorimport torchimport numpy as np创建一个Tensor,并设置requires_grad=Truex=torch.ones(2,2,requires_grad=True)print(x)print(x.grad_fn)tensor([[1., 1.], [1., 1.]], requires_grad=True)Noney=x+2print(y)print(y.grad_fn)tensor([[3., 3.],原创 2021-02-17 15:00:42 · 434 阅读 · 0 评论 -
Pytorch中的Hook(常用于网络特征可视化等)
Pytorch中的Hook使用Hook函数获取网络中间变量.Hook函数机制是不改变函数主体,实现额外功能,像一个挂件,挂钩。正是因为PyTorch计算图动态图的机制,所以才会有Hook函数。在动态图机制的运算,当运算结束后,一些中间变量就会被释放掉,例如,特征图,非leaf节点的梯度。但是有时候,我们需要这些中间变量,所以就出现了Hook函数。torch提供了四种hook方法,分别用于获取各个参数的梯度值。tensor.register_hook(hook)获取各个层前向传播的输入输出值。Mo原创 2021-02-01 19:01:20 · 2398 阅读 · 3 评论 -
Pytorch Gpu环境配置(亲测可用)(win10+CUDA9.0+pytorch1.1+ torchvision0.3+cudatoolkit9.0)
Pytorch Gpu环境配置(亲测可用)(win10+CUDA9.0+pytorch1.1+ torchvision0.3+cudatoolkit9.0)1.检查是否有合适的GPU, 若有安装Cuda与CuDNN(1)检查电脑是否有合适的GPU在桌面上右击如果能找到NVIDA控制面板,则说明该电脑有GPU。控制面板如下,并通过查看系统信息获取支持的Cuda版本(2)下载Cuda官网:https://developer.nvidia.com/cuda-10.1-download-archive原创 2020-11-21 16:31:32 · 3459 阅读 · 3 评论 -
Pycharm安装PyTorch失败问题解决
Pycharm安装PyTorch失败问题解决官网查找命令,本为未选择GPU,命令为:pip install torch== 1.4.0+cpu torchvision==0.5.0+cpu -f https://download.pytorch.org/whl/torch_stable.html 官网:https://pytorch.org/复制生成的安装命令,cmd窗口中安装pytorc...原创 2020-02-13 14:23:50 · 15242 阅读 · 2 评论