算法练习1

给定一个有序的N×M矩阵matrix和整数K,设计一个时间复杂度为O(N+M)、空间复杂度为O(1)的函数判断K是否在矩阵中。输入包含矩阵大小和元素,输出"Yes"或"No"表示K是否存在。采用从左下角开始的搜索策略,根据比较结果调整行或列指针。
摘要由CSDN通过智能技术生成

题目描述

给定一个N \times MN×M的整形矩阵matrix和一个整数K, matrix的每一行和每一列都是排好序的。
实现一个函数,判断K是否在matrix中
[要求]
时间复杂度为O(N+M)O(N+M),额外空间复杂度为O(1)O(1)。
输入描述:
第一行有三个整数N, M, K ,接下来N行,每行M个整数为输入的矩阵
输出描述:
若K存在于矩阵中输出"Yes",否则输出"No"
示例1
输入
1 2 3 4
2 4 5 6
输出
备注:
1 \leqslant N, M \leqslant 10001⩽N,M⩽1000
0 \leqslant K, \text{矩阵中的数} \leqslant 10^90⩽K,矩阵中的数⩽10
9

解题

此题是在有序的二维数组中找数,因为是有序的,所以没有必要从左到右,从上到下一个一个的找。可以先从右上或者左下开始。以左下举例子,当左下的数字大于要找的数字,说明在该行中所有的数字都大于它,所以需要在上一行中寻找。如果左下的数字小于要找的数字,说明该数字可能在这一行中,所以将列数加一。如果数字正好等于要找的数字。则直接跳出。然后以此类推。

C的解题步骤 ,空间复杂度为O(1),时间复杂度为O(n2)
#include<stdio.h>
int main()
{
   
    int i,j;
    int N,M,K;
     scanf("%d%d%d",&N,&M,&K);
    int a[N][M];
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值