Hive总结

本文详细介绍了Hive的内部表和外部表的区别,强调了数据管理和删除操作的不同。此外,讨论了Hive的索引功能及其有限的使用场景。接着,探讨了运维中如何调度Hive任务,并分析了ORC和Parquet列式存储的优点。文章还涵盖了数据建模的星型、雪花和星座模型,并解释了数据仓库分层的原因。对于Hive遇到的数据倾斜问题,提出了多种解决方案。最后,讨论了Hive的优化技巧,如表关联的实现方式和解决小文件过多的方法,以及Hive与其他数据库的异同、元数据存储方式和压缩格式的选择等。
摘要由CSDN通过智能技术生成

1、hive内部表和外部表的区别

未被external修饰的是内部表,被external修饰的为外部表。
区别:

1.内部表数据由Hive自身管理,外部表数据由HDFS管理;
2.内部表数据存储的位置是hive.metastore.warehouse.dir(默认:/user/hive/warehouse),
3.外部表数据的存储位置由自己制定(如果没有LOCATION,Hive将在HDFS上 的/user/hive/warehouse文件夹以外部表的表名创建一个文件夹,并将属于这个表的数据存 放在这里);
4.删除内部表会直接删除元数据(metadata)及存储数据;删除外部表仅仅会删除元数据,HDFS上的文件并不会被删除。

2、Hive有索引吗

Hive支持索引(3.0版本之前),但是Hive的索引与关系型数据库中的索引并不相同。并且 Hive索引提供的功能很有限,效率也并不高,因此Hive索引很少使用。

索引适用的场景:

适用于不更新的静态字段。以免总是重建索引数据。每次建立、更新数据后,都要重建索 引以构建索引表。

3、运维如何对hive进行调度

将hive的sql定义在脚本当中;
使用azkaban或者oozie进行任务的调度;
监控任务调度页面。

4、ORC、Parquet等列式存储的优点

  • ORC:ORC文件是自描述的,它的元数据使用Protocol Buffers序列化,文件中的数据尽可能的压缩以降低存储空间的消耗;以二进制方式存储,不可以直接读取;自解析,包含许多元数据,这些元数据都是同构ProtoBuffer进行序列化的;会尽可能合并多个离散的区间尽可能的减少I/O次数;在新版本的ORC中也加入了对Bloom
    Filter的支持,它可以进一 步提升谓词下推的效率,在Hive 1.2.0版本以后也加入了对此的支 持。

  • Parquet:Parquet支持嵌套的数据模型,类似于Protocol Buffers,每一个数据模型的schema包含多个字段,每一个字段有三个属性:重复次数、数据类型和字段名;Parquet中没有Map、Array这样的复杂数据结构,但是可以通过repeated和group组合来实现;通过Striping/Assembly算法,parquet可以使用较少的存储空间表示复杂的嵌套格式,并且通常Repetition
    level和Definition
    level都是较小的整数值,可以通过RLE算法对其进行压缩,进一步降低存储空间;Parquet文件以二进制方式存储,不可以直接读取和修改,Parquet文件是自解析的,文件中包括该文件的数据和元数据。

5、数据建模用的哪些模型

星型模型
在这里插入图片描述

星形模式(Star Schema)是最常用的维度建模方式。星型模式是以事实表为中心,所有的维度表直接连接在事实表上,像星星一样。星形模式的维度建模由一个事实表和一组维表成,且具有以下特点:
a. 维表只和事实表关联,维表之间没有关联;
b. 每个维表主键为单列,且该主键放置在事实表中,作为两边连接的外键;
c. 以事实表为核心,维表围绕核心呈星形分布。

雪花模型
在这里插入图片描述

雪花模式(Snowflake Schema)是对星形模式的扩展。雪花模式的维度表可以拥有其他维度表的,虽然这种模型相比星型更规范一些,但是由于这种模型不太容易理解,维护成本比较高,而且性能方面需要关联多层维表,性能比星型模型要低。

星座模型
在这里插入图片描述

星座模式是星型模式延伸而来,星型模式是基于一张事实表的,而星座模式是基于多张事实表的,而且共享维度信息。前面介绍的两种维度建模方法都是多维表对应单事实表,但在很多时候维度空间内的事实表不止一个,而一个维表也可能被多个事实表用到。在业务发展后期,绝大部分维度建模都采用的是星座模式。

6、为什么要对数据仓库分层

用空间换时间,通过大量的预处理来提升应用系统的用户体验(效率),因此数据仓库会 存在大量冗余的数据。如果不分层的话,如果源业务系统的业务规则发生变化将会影响整个数据清洗过程,工作量巨大。
通过数据分层管理可以简化数据清洗的过程,因为把原来一步的工作分到了多个步骤去完成,相当于把一个复杂的工作拆成了多个简单的工作,把一个大的黑盒变成了一个白盒,每一层的处理逻辑都相对简单和容易理解,这样我们比较容易保证每一个步骤的正确性,当数据发生错误的时候,往往我们只需要局部调整某个步骤即可。

7、使用过Hive解析JSON串吗

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值