树类模型特征重要性计算方法

本文介绍了在GBDT、Random Forest和Xgboost等树类模型中计算特征重要性的不同方法,包括Random Forest的袋外数据错误率和基尼指数,GBDT的基尼指数,Xgboost的gain、weight和cover指标,以及Lightgbm的split和gain。这些方法帮助理解特征在模型中的影响力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们在使用GBDT、RF、Xgboost等树类模型建模时,都会有一个feature_importance的方法来返回特征重要性。下面总结了不同树类模型计算特征重要性的原理:

  • Random Foreast
    • 袋外数据错误率
    • 基尼指数
  • GBDT
    • 基尼指数
  • Xgboost
    • gain:is the average gain of splits which use the feature。就是特征用于分割的平均增益 
    • weight:is the number of times a feature appears in a tree。就是在所有树中特征用来分割的节点个数总和
    • cover:is the average coverage of splits which use the feature where coverage is defined as the number of samples affected by the split。可以理解为被分到该节点的样本的二阶导数之和,而特征度量的标准就是平均的coverage值
  • Lightgbm
    • split:result contains numbers of times the feature is used in a mode
    • gain:result contains total gains of splits which use the feature

参考文献:

https://blog.csdn.net/zhangbaoanhadoop/article/details/81840656

https://www.cnblogs.com/xinping-study/archive/2018/04/10/8780817.html

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值