Leetcode刷题(22) 以基本数据结构的高级数据结构及其API

146. LRU缓存机制

class ListNode:
    def __init__(self, key=None, value=None):
        self.key = key
        self.value = value
        
        self.prev = None
        self.next = None


class LRUCache:
    def __init__(self, capacity):
        self.capacity = capacity
        self.hashmap = {}
        # 新建两个节点 head 和 tail
        self.head = ListNode()
        self.tail = ListNode()
        # 初始化链表为 head <-> tail
        self.head.next = self.tail
        self.tail.prev = self.head

    # 因为get与put操作都可能需要将双向链表中的某个节点移到头部(变成最新访问的),所以定义一个方法
    def move_node_to_header(self, key):
            # 先将哈希表key指向的节点拎出来,为了简洁起名node
            #      hashmap[key]                               hashmap[key]
            #           |                                          |
            #           V              -->                         V
            # prev <-> node <-> next         pre <-> next   ...   node
            node = self.hashmap[key]
            node.prev.next = node.next
            node.next.prev = node.prev
            # 之后将node插入到头部节点前
            #                   hashmap[key]                     hashmap[key]
            #                       |                                 |
            #                       V        -->                      V
            # header <-> next  ... node                   header <-> node <-> next
            node.prev = self.head
            node.next = self.head.next
            self.head.next.prev = node
            self.head.next = node
            
    def add_node_to_header(self, key, value):
        new = ListNode(key, value)
        self.hashmap[key] = new
        new.prev = self.head
        new.next = self.head.next
        self.head.next.prev = new
        self.head.next = new
        
    def pop_tail(self):
        last_node = self.tail.prev
        # 去掉链表尾部的节点在哈希表的对应项
        self.hashmap.pop(last_node.key)
        # 去掉最久没有被访问过的节点,即尾部Tail之前的一个节点
        last_node.prev.next = self.tail
        self.tail.prev = last_node.prev
        return last_node
    
    def get(self, key):
        if key in self.hashmap:
            # 如果已经在链表中了久把它移到头部(变成最新访问的)
            self.move_node_to_header(key)
        res = self.hashmap.get(key, -1)
        if res == -1:
            return res
        else:
            return res.value

    def put(self, key, value):
        if key in self.hashmap:
            # 如果key本身已经在哈希表中了就不需要在链表中加入新的节点
            # 但是需要更新字典该值对应节点的value
            self.hashmap[key].value = value
            # 之后将该节点移到链表头部
            self.move_node_to_header(key)
        else:
            if len(self.hashmap) >= self.capacity:
            # 若cache容量已满,删除cache中最不常用的节点 
                self.pop_tail()
            self.add_node_to_header(key,value)

最小堆

主要的方法参考labuladong的二叉堆详解实现优先级队列

class MinStack(object):

    def __init__(self):
        """
        initialize your data structure here.
        """
        self.minStack = [None]
        self.n = 0

    def parent(self, k):
        return k // 2

    def left(self, k):
        return 2 * k

    def right(self, k):
        return 2 * k + 1

    def less(self, i, j):
        return self.minStack[i] < self.minStack[j]

    def sink(self, k):
        while(self.left(k) <= self.n):
            # 找到最小值
            smaller = self.left(k)
            if (self.right(k) <= self.n and self.less(self.right(k), smaller)):
                smaller = self.right(k)
            if self.less(k, smaller):
                break

            # 交换数值
            tmp = self.minStack[smaller]
            self.minStack[smaller] = self.minStack[k]
            self.minStack[k] = tmp
            # 更改k
            k = smaller

    def swim(self, k):
        while(self.parent(k) >= 1 and self.less(k, self.parent(k))):
            # 交换数值
            tmp = self.minStack[self.parent(k)]
            self.minStack[self.parent(k)] = self.minStack[k]
            self.minStack[k] = tmp
            # 更改k
            k = self.parent(k)
        
    def insert(self, x):
        """
        :type x: int
        :rtype: None
        """
        # 在stack的尾部加入元素
        self.n += 1
        self.minStack.append(x)
        # 上浮到合适的位置
        self.swim(self.n)
        
    def delMin(self):
        """
        :rtype: None
        """
        tmp = self.minStack[1]
        self.minStack[1] = self.minStack[self.n]
        self.minStack[self.n] = tmp
        self.n -= 1
        self.sink(1)

    def getMin(self):
        """
        :rtype: int
        """
        if self.n >= 1:
            return self.minStack[1]

155. 最小栈

参考https://leetcode-cn.com/problems/min-stack/solution/shi-yong-fu-zhu-zhan-tong-bu-he-bu-tong-bu-python-/

class MinStack:

    # 辅助栈和数据栈同步
    # 思路简单不容易出错

    def __init__(self):
        # 两个栈的长度相同
        # 数据栈, 就是正常的栈结构
        self.data = []
        # 辅助栈, 里面存放的的是和data每个阶段对应的最小值,是同步的
        self.helper = []

    def push(self, x):
        self.data.append(x)
        # x比helper栈顶元素小, 加入栈顶成为当前阶段的最小元素
        if len(self.helper) == 0 or x <= self.helper[-1]:
            self.helper.append(x)
        else:
            # x没有比站内的最下元素小, 所以将self.helper[-1]加入helper加入栈顶
            self.helper.append(self.helper[-1])

    def pop(self):
        if self.data:
            # 两站同步
            self.helper.pop()
            return self.data.pop()

    def top(self):
        if self.data:
            return self.data[-1]

    def getMin(self):
        if self.helper:
            return self.helper[-1]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值