GhostNet的主要代码理解及其注释

参考的知乎博客:CVPR 2020:华为GhostNet,超越谷歌MobileNet,已开源

github: https://github.com/huawei-noah/ghostnet

# 2020.06.09-Changed for building GhostNet
#            Huawei Technologies Co., Ltd. <foss@huawei.com>
"""
Creates a GhostNet Model as defined in:
GhostNet: More Features from Cheap Operations By Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, Chang Xu.
https://arxiv.org/abs/1911.11907
Modified from https://github.com/d-li14/mobilenetv3.pytorch and https://github.com/rwightman/pytorch-image-models
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import math


__all__ = ['ghost_net']


def _make_divisible(v, divisor, min_value=None):
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py

    min_value: 是out_channel的最小值,
               如果int(v + divisor / 2) // divisor * divisor的结果小于min_value的话,
               out_channel的值就是min_value
    这个函数的作用就是对in_channel: v做一个最低限度的通道变换,使得mew_v可以被divisor整除

    e.g: 30 ---> 32 生成的通道数量能被 4 整除
    """

    if min_value is None:
        min_value = divisor

    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    # print(int(v), "--->", int(new_v), "生成的通道数量能被", divisor, "整除")
    return new_v

# 就是一个带有截断的sigmoid
def hard_sigmoid(x, inplace: bool = False):
    if inplace:
        return x.add_(3.).clamp_(0., 6.).div_(6.)
    else:
        return F.relu6(x + 3.) / 6.


class SqueezeExcite(nn.Module):
    def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None,
                 act_layer=nn.ReLU, gate_fn=hard_sigmoid, divisor=4, **_):
        super(SqueezeExcite, self).__init__()

        self.gate_fn = gate_fn
        # 通道压缩, se_ratio=0.25
        reduced_chs = _make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor)
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        # 通道压缩为之前的1/4
        self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
        # 激活函数
        self.act1 = act_layer(inplace=True)
        self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)

    def forward(self, x):

        x_se = self.avg_pool(x)
        x_se = self.conv_reduce(x_se)
        x_se = self.act1(x_se)
        x_se = self.conv_expand(x_se)
        # x_se就是通道注意力
        x = x * self.gate_fn(x_se)
        return x    

    
class ConvBnAct(nn.Module):
    def __init__(self, in_chs, out_chs, kernel_size,
                 stride=1, act_layer=nn.ReLU):
        super(ConvBnAct, self).__init__()
        self.conv = nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size // 2, bias=False)
        self.bn1 = nn.BatchNorm2d(out_chs)
        self.act1 = act_layer(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn1(x)
        x = self.act1(x)
        return x

# 最关键的模块
class GhostModule(nn.Module):
    def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True):
        """
        kernel_size = 1
        ratio = 2
        dw_size = 3
        stride = 1
        """
        # 这里采用了分离卷积
        # self.primary_conv: kernel_size = 1
        # self.cheap_operation: groups=init_channels

        super(GhostModule, self).__init__()
        self.oup = oup
        # 中间层的channel(是输入层的1 / 2)
        init_channels = math.ceil(oup / ratio)
        # 输出层的channel
        new_channels = init_channels * (ratio - 1)

        # 1×1的卷积用来降维
        self.primary_conv = nn.Sequential(
            nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size // 2, bias=False),
            nn.BatchNorm2d(init_channels),
            nn.ReLU(inplace=True) if relu else nn.Sequential(),
        )

        # 3×3的分组卷积进行线性映射
        self.cheap_operation = nn.Sequential(
            nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size // 2, groups=init_channels, bias=False),
            nn.BatchNorm2d(new_channels),
            nn.ReLU(inplace=True) if relu else nn.Sequential(),
        )

    def forward(self, x):
        x1 = self.primary_conv(x)
        x2 = self.cheap_operation(x1)
        # 将x1和x2沿着通道数堆叠
        out = torch.cat([x1, x2], dim=1)

        # 只返回需要的通道数
        return out[:, :self.oup, :, :]

"""
Ghost bottleneck主要由两个堆叠的Ghost模块组成。
第一个Ghost模块用作扩展层,增加了通道数。这里将输出通道数与输入通道数之比称为expansion ratio。
第二个Ghost模块减少通道数,以与shortcut路径匹配。然后,使用shortcut连接这两个Ghost模块的输入和输出。
"""
class GhostBottleneck(nn.Module):
    """ Ghost bottleneck w/ optional SE"""

    def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3,
                 stride=1, act_layer=nn.ReLU, se_ratio=0.):
        super(GhostBottleneck, self).__init__()

        # 通道压缩系数
        has_se = se_ratio is not None and se_ratio > 0.

        self.stride = stride
        # Point-wise expansion
        # 增加通道数
        self.ghost1 = GhostModule(in_chs, mid_chs, relu=True)

        # Depth-wise convolution
        if self.stride > 1:
            self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size,
                                     stride=stride,
                                     padding=(dw_kernel_size - 1) // 2,
                                     groups=mid_chs, bias=False)
            self.bn_dw = nn.BatchNorm2d(mid_chs)

        # Squeeze-and-excitation
        if has_se:
            self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio)
        else:
            self.se = None

        # Point-wise linear projection
        self.ghost2 = GhostModule(mid_chs, out_chs, relu=False)
        
        # shortcut
        # 如果是以下的参数的话, 不需要使用额外的卷积层进行通道和尺寸的变换
        if (in_chs == out_chs and self.stride == 1):
            self.shortcut = nn.Sequential()
        else:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride,
                          padding=(dw_kernel_size - 1) // 2, groups=in_chs, bias=False),
                nn.BatchNorm2d(in_chs),
                nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False),
                nn.BatchNorm2d(out_chs),
            )


    def forward(self, x):
        residual = x

        # 1st ghost bottleneck
        x = self.ghost1(x)

        # Depth-wise convolution
        if self.stride > 1:
            x = self.conv_dw(x)
            x = self.bn_dw(x)

        # Squeeze-and-excitation
        if self.se is not None:
            x = self.se(x)

        # 2nd ghost bottleneck
        x = self.ghost2(x)
        
        x += self.shortcut(residual)
        return x


class GhostNet(nn.Module):
    def __init__(self, cfgs, num_classes=1000, width=1.0, dropout=0.2):
        """
        width: 1.0
        dropout: 0.2
        """
        super(GhostNet, self).__init__()
        # setting of inverted residual blocks
        self.cfgs = cfgs
        self.dropout = dropout

        # building first layer
        # 计算输出的channel大小
        output_channel = _make_divisible(16 * width, 4)
        # stem是起源的意思
        self.conv_stem = nn.Conv2d(3, output_channel, 3, 2, 1, bias=False)
        self.bn1 = nn.BatchNorm2d(output_channel)
        self.act1 = nn.ReLU(inplace=True)

        input_channel = output_channel

        # building inverted residual blocks
        stages = []
        block = GhostBottleneck  # 这是一个class
        for cfg in self.cfgs:
            # 每个layer就是一个stage
            layers = []
            """
            c: 控制输出层
            exp_size: 控制影藏层
            """
            for k, exp_size, c, se_ratio, s in cfg:
                # print(k, exp_size, c, se_ratio, s)
                # 得到输出层和隐藏层的channel, 这些channel都要能被4整除
                output_channel = _make_divisible(c * width, 4)
                hidden_channel = _make_divisible(exp_size * width, 4)
                layers.append(block(input_channel, hidden_channel, output_channel, k, s, se_ratio=se_ratio))

                # 更新下一个block的in_channel
                input_channel = output_channel
            stages.append(nn.Sequential(*layers))

        output_channel = _make_divisible(exp_size * width, 4)
        stages.append(nn.Sequential(ConvBnAct(input_channel, output_channel, 1)))
        input_channel = output_channel
        
        self.blocks = nn.Sequential(*stages)        

        # building last several layers
        output_channel = 1280
        self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.conv_head = nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=True)
        self.act2 = nn.ReLU(inplace=True)
        self.classifier = nn.Linear(output_channel, num_classes)

    def forward(self, x):
        x = self.conv_stem(x)
        x = self.bn1(x)
        x = self.act1(x)
        # ------主要的网络层--------
        x = self.blocks(x)
        # ------------------------
        x = self.global_pool(x)
        x = self.conv_head(x)
        x = self.act2(x)
        x = x.view(x.size(0), -1)
        if self.dropout > 0.:
            x = F.dropout(x, p=self.dropout, training=self.training)
        x = self.classifier(x)
        return x


def ghostnet(**kwargs):
    """
    Constructs a GhostNet model
    """
    cfgs = [
        # k, t, c, SE, s 
        # stage1
        [[3,  16,  16, 0, 1]],
        # stage2
        [[3,  48,  24, 0, 2]],
        [[3,  72,  24, 0, 1]],
        # stage3
        [[5,  72,  40, 0.25, 2]],
        [[5, 120,  40, 0.25, 1]],
        # stage4
        [[3, 240,  80, 0, 2]],
        [[3, 200,  80, 0, 1],
         [3, 184,  80, 0, 1],
         [3, 184,  80, 0, 1],
         [3, 480, 112, 0.25, 1],
         [3, 672, 112, 0.25, 1]
        ],
        # stage5
        [[5, 672, 160, 0.25, 2]],
        [[5, 960, 160, 0, 1],
         [5, 960, 160, 0.25, 1],
         [5, 960, 160, 0, 1],
         [5, 960, 160, 0.25, 1]
        ]
    ]
    return GhostNet(cfgs, **kwargs)


if __name__ == '__main__':
    model = ghostnet()
    model.eval()
    # print(model)
    input = torch.randn(32, 3, 320, 256)
    y = model(input)
    print(y.size())

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值