两只橙的博客

淡泊以明志,宁静以致远

我的三年CSDN博客

第一次写CSDN博客到现在已经过去三年了,不知不觉就写了三年,发表了180多篇文章。 记得刚开始写只是为了记录开发过程中遇到的各种坑,等以后遇到后能快速查阅,现在看来都是一些十分低级的bug。 刚开始真正接触编程是在大学(虽然高中有接触,但只是皮毛),学的第一门语言是C++,那时候感觉特别难,...

2018-11-18 21:50:01

阅读数 2139

评论数 24

第六章(1.1)自然语言处理实战——TF-IDF算法原理

一、什么是TF-IDF TF-IDF(Term Frequency-Inverse Document Frequency, 词频-逆文件频率). 是一种用于资讯检索与资讯探勘的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。...

2018-03-30 15:09:43

阅读数 382

评论数 0

第六章(1.7)深度学习实战——用lstm做小说预测

一、简介 长短期记忆网络 LSTM(Long-Short Term Memory)是递归神经网络(RNN:Recurrent Neutral Network)的一种。 RNNs也叫递归神经网络序列,它是一种根据时间序列或字符序列(具体看应用场景)自我调用的特殊神经网络。将它按序列展开后,就成...

2018-03-21 16:09:05

阅读数 953

评论数 0

第六章(1.5)深度学习实战——利用RNN和LSTM生成小说题记

一、选取素材 本文选取的小说素材来自17k小说网的一篇小说,手工复制小说中的题记。 小说网址:http://www.17k.com/list/2793873.html 训练语料如下: 语料格式 题记:此情可待成追忆,只是当时已惘然。 二、开发环境 tensorflow ancond...

2018-03-16 19:24:28

阅读数 709

评论数 0

第六章(1.6)机器学习实战——打造属于自己的贝叶斯分类器

github项目地址:https://github.com/liangzhicheng120/bayes 一、简介 项目使用SpringBoot做了一层web封装 项目使用的分词工具hanlp 项目使用JDK8 贝叶斯法则 事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概...

2018-03-13 17:49:30

阅读数 332

评论数 0

第六章(1.4)自然语言处理实战——时间语义抽取

项目github地址:https://github.com/liangzhicheng120/nlp 一、简介 本工具是由复旦NLP中的时间分析功能修改而来,做了一些细节和功能的优化,经SpringBoot封装成web工具。 泛指时间的支持,如:早上、晚上、中午、傍晚等。 时间未来倾向...

2018-03-12 16:28:38

阅读数 1757

评论数 3

第六章(1.2)自然语言处理实战——打造属于自己的中文word2vector工具

一、环境 python3.6安装 anaconda安装 jieba安装 gensim安装 IDEA 编辑器安装 二、实战演练 训练语料source.txt 9月12日随着颁奖典礼的结束,我院获得了商委系统运动会系列活动之一——足球比赛的季军,本次比赛立时十天,十二只球队分成两...

2018-03-09 10:37:33

阅读数 2139

评论数 1

第五章(1.7)深度学习——常用的八种神经网络性能调优方案

一、神经网络性能调优主要方法 数据增广 图像预处理 网络初始化 训练过程中的技巧 激活函数的选择 不同正则化方法 来自于数据的洞察 集成多个深度网络 1. 数据增广 在不改变图像类别的情况下,增加数据量,能提高模型的泛化能力。 自然图像的数据增广方式包括...

2018-02-23 10:57:27

阅读数 1165

评论数 0

第四章(1.1)机器学习——RF(随机森林)、GBDT、XGBoost算法

一、概念RF、GBDT和XGBoost都属于集成学习(Ensemble Learning),集成学习的目的是通过结合多个基学习器的预测结果来改善单个学习器的泛化能力和鲁棒性。二、关系根据个体学习器的生成方式,目前的集成学习方法大致分为两大类:即个体学习器之间存在强依赖关系、必须串行生成的序列化方法...

2018-02-08 09:46:06

阅读数 464

评论数 0

第四章(1.2)机器学习——在web攻击检测中的应用实践

一、背景通俗地讲,任何一个的机器学习问题都可以等价于一个寻找合适变换函数的问题。例如语音识别,就是在求取合适的变换函数,将输入的一维时序语音信号变换到语义空间;而近来引发全民关注的围棋人工智能AlphaGo则是将输入的二维布局图像变换到决策空间以决定下一步的最优走法;相应的,人脸识别也是在求取合适...

2018-01-19 15:00:07

阅读数 1415

评论数 0

第五章(1.4)深度学习——神经网络架构和原理

一、为什么需要机器学习 有些任务直接编码较为复杂,我们不能处理所有的细微之处和简单编码,因此,机器学习很有必要。相反,我们向机器学习算法提供大量数据,让算法不断探索数据并构建模型来解决问题。比如:在新的杂乱照明场景内,从新的角度识别三维物体;编写一个计算信用卡交易诈骗概率的程序。 机器学习方法...

2018-01-18 09:47:46

阅读数 161

评论数 0

第七章(1.2)图像处理——人脸识别技术发展及实用方案设计

人脸识别技术不但吸引了Google、Facebook、阿里、腾讯、百度等国内外互联网巨头的大量研发投入,也催生了Face++、商汤科技、Linkface、中科云从、依图等一大波明星创业公司,在视频监控、刑事侦破、互联网金融身份核验、自助通关系统等方向创造了诸多成功应用案例。本文试图梳理人脸识别技术...

2018-01-10 22:01:05

阅读数 127

评论数 0

第八章(1.1)总结与展望——AI 领域最稀缺的人才:人工智能架构师

这里,就不卖关子了。AI领域最最最最最稀缺的人才应该为人工智能架构师。有过4次技术创业经历,如今做AI投资的星瀚资本创始合伙人杨歌如是说。 在杨歌的身上,传奇的经历多得是。 清华学霸,技术男,四次技术创业经历,创建青年精英商业联合会,投身PE,创办星瀚资本,圈内最懂AI技术的投资人之一...

2018-01-08 17:53:26

阅读数 890

评论数 0

第七章(1.3)图像处理—— 深度学习PK传统机器学习

原文:Image Classification in 5 Methods https://medium.com/towards-data-science/image-classification-in-5-methods-83742aeb3645图像分类,顾名思义,是一个输入图像,输出对该图像...

2017-12-29 17:54:49

阅读数 225

评论数 0

第三章(1.5)关于tensorflow优化器 optimizer 的选择

一、简介 在很多机器学习和深度学习的应用中,我们发现用的最多的优化器是Adam,为什么呢? 下面是 TensorFlow 中的优化器: 详情参见:https://www.tensorflow.org/api_guides/python/train 在keras中也有SGD,RMSpro...

2017-10-26 16:11:01

阅读数 305

评论数 0

第五章(1.1)深度学习——神经网络相关名词解释

一、前言 很多人认为深度学习很枯燥,大部分情况是因为对深度学习的学术词语,特别是专有名词很困惑,即便对相关从业者,亦很难深入浅出地解释这些词语的含义。 人工智能,深度学习,机器学习—无论你在做什么,如果你对它不是很了解的话—去学习它。否则的话不用三年你就跟不上时代的潮流了。 ...

2017-10-24 18:40:37

阅读数 1549

评论数 0

第五章(1.6)深度学习——循环神经网络简介

循环神经网络的神经网络体系结构,它针对的不是自然语言数据,而是处理连续的时间数据,如股票市场价格。在本文结束之时,你将能够对时间序列数据中的模式进行建模,以对未来的值进行预测。1.上下文信息回到学校,我的一个期中考试仅由真的或假的问题组成时。假设一半的答案是“真的”,而另一半则是“假的”。我想出了...

2017-10-24 09:40:20

阅读数 158

评论数 0

第五章(1.5)深度学习——卷积神经网络简介

卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. 一、工作原理 卷积是图像处理中一种基本方法. 卷积核是一个nxn的矩阵通常n取奇数, 这样矩阵...

2017-10-19 19:37:47

阅读数 192

评论数 0

第一章(1.1)人工智能简介

一、人工智能——历史二、人工智能——内涵和外延三、人工智能——应用领域

2017-10-18 10:03:26

阅读数 1766

评论数 0

第三章(1.6)tensorflow cross_entropy 四种交叉熵计算函数

一、Tensorflow交叉熵函数:cross_entropy 以下交叉熵计算函数输入中的logits都不是softmax或sigmoid的输出,因为它在函数内部进行了sigmoid或softmax操作 1、tf.nn.sigmoid_cross_entropy_with_logits(_se...

2017-10-10 21:12:22

阅读数 301

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭