HDU - 6228 Tree (2017ICPC沈阳站 深搜+思维)

版权声明:Why is everything so heavy? https://blog.csdn.net/lzc504603913/article/details/78513654

Tree



Problem Description
Consider a un-rooted tree T which is not the biological significance of tree or plant, but a tree as an undirected graph in graph theory with n nodes, labelled from 1 to n. If you cannot understand the concept of a tree here, please omit this problem.
Now we decide to colour its nodes with k distinct colours, labelled from 1 to k. Then for each colour i = 1, 2, · · · , k, define Ei as the minimum subset of edges connecting all nodes coloured by i. If there is no node of the tree coloured by a specified colour i, Ei will be empty.
Try to decide a colour scheme to maximize the size of E1 ∩ E2 · · · ∩ Ek, and output its size.
 

Input
The first line of input contains an integer T (1 ≤ T ≤ 1000), indicating the total number of test cases.
For each case, the first line contains two positive integers n which is the size of the tree and k (k ≤ 500) which is the number of colours. Each of the following n - 1 lines contains two integers x and y describing an edge between them. We are sure that the given graph is a tree.
The summation of n in input is smaller than or equal to 200000.
 

Output
For each test case, output the maximum size of E1 ∩ E1 ... ∩ Ek.
 

Sample Input
3 4 2 1 2 2 3 3 4 4 2 1 2 1 3 1 4 6 3 1 2 2 3 3 4 3 5 6 2
 

Sample Output
1 0 1
 




题意:给你一棵树,和K种颜色,用这K种颜色去染色。然后将相同颜色的点连通所需要的最少的边作为一个集合。然后将所有颜色形成的集合做一个交,现在要找到一种染色方案,使得这个交集最大。若不使用某种颜色,那么该颜色的边集为空集。


解题思路:题目看了半天,终于看懂了,一开始往点的方向去想,毫无思路,换成边去想就好了。首先对于某种颜色染色,肯定是只染两个点最好(尽量的省点给其他颜色染)!基于这个思路,我们又想到,为了使集合最大化,肯定是染最远的两个点最好!但是有很多颜色,怎么办呢?其实对于每一条边,他有两个点,或者说两个子树,我们只要看看对于每一条边,它左右两边的子树的大小,是不是都大于K就好了。如果是,那么那条边,肯定在交集里面!(基于我们的最优算法)。所以一个深搜,答案就出来了,具体看代码。


#include<iostream>
#include<deque>
#include<memory.h>
#include<stdio.h>
#include<map>
#include<string.h>
#include<algorithm>
#include<vector>
#include<math.h>
#include<stack>
#include<queue>
#include<set>
using namespace std;
typedef long long int ll;
const int MAXV=200005;

int k,ans;
struct edge{
    int v1,v2,next;
}e[MAXV];

int n,edge_num;
int head[MAXV];
int num[MAXV];//记录某个点的子树的大小

void insert_edge(int v1,int v2){
    e[edge_num].v1=v1;
    e[edge_num].v2=v2;
    e[edge_num].next=head[v1];
    head[v1]=edge_num++;

    e[edge_num].v1=v2;
    e[edge_num].v2=v1;
    e[edge_num].next=head[v2];
    head[v2]=edge_num++;
}

void dfs(int v,int fa){
    num[v]=1;
    for(int i=head[v];i!=-1;i=e[i].next){
        if(e[i].v2!=fa){
            dfs(e[i].v2,v);
            num[v]+=num[e[i].v2];
            
            //每条边的右边子树与左边子树的大小,左边=n-右边
            if(num[e[i].v2]>=k&&n-num[e[i].v2]>=k)
                ans++;
        }
    }

}


int main(){
    int t;
    scanf("%d",&t);

    while(t--){
        edge_num=0;
        memset(head,-1,sizeof(head));
        memset(num,0,sizeof(num));

        scanf("%d%d",&n,&k);
        int a,b;
        for(int i=0;i<n-1;i++){
            scanf("%d%d",&a,&b);
            insert_edge(a,b);
        }
        ans=0;
        dfs(1,0);
        printf("%d\n",ans);

    }

    return 0;
}
















展开阅读全文

没有更多推荐了,返回首页