算法之时间复杂度

本文介绍了时间复杂度分析的关键原则,包括关注循环次数最多的代码、加法和乘法原则。列举了常见的时间复杂度类型,如常量阶、对数阶、线性阶等,并按时间消耗从小到大排序。强调了O(n)、O(logn)等复杂度在效率上的优势,而O(2^n)、O(n!)等复杂度应避免在实际编程中使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、时间复杂度分析有下面几个原则:

1)只关注循环执行次数最多的一段代码;

2)加法原则:总复杂度等于量级最大的那段代码的复杂度。用公式表示即为:T1(n) = O(f(m)),T2(n) = O(g(n)),T1(n) + T2(m) = O(max(f(n), g(m)))

3)乘法原则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘机。用公式表示即为:T1(n) = O(f(m)),T2(n) = O(g(n)),T1(n) * T2(m) = O(f(n) * g(m))

2、常见的时间复杂度有以下几种:

1)常量阶:O(1)

2)对数阶:O(logn)

3)线性阶:O(n)

4)线性对数阶:O(nlogn)

5)平方阶:O(n ^ 2)

6)指数阶:O(2 ^ n)

7)阶乘阶:O(n!)

其中,1)-5)为多项式量级;6)、7)为非多项式量级,所对应的算法问题被称为非确定多项式问题(NP 问题,Non-Deterministic Polynomial)。

3、常用的时间复杂度按照耗费的时间从小

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值