区间DP

先来看看题吧.

1382 沙子合并

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 大师 Master

题目描述 Description

   设有N堆沙子排成一排,其编号为1,2,3,…,N(N<=300)。每堆沙子有一定的数量,可以用一个整数来描述,现在要将这N堆沙子合并成为一堆,每次只能合并相邻的两堆,合并的代价为这两堆沙子的数量之和,合并后与这两堆沙子相邻的沙子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同,如有4堆沙子分别为 1 3 5 2 我们可以先合并1、2堆,代价为4,得到4 5 2 又合并 1,2堆,代价为9,得到9 2 ,再合并得到11,总代价为4+9+11=24,如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22;问题是:找出一种合理的方法,使总的代价最小。输出最小代价。

输入描述 Input Description

第一行一个数N表示沙子的堆数N。
第二行N个数,表示每堆沙子的质量。 <=1000

输出描述 Output Description

合并的最小代价

样例输入 Sample Input

4
1 3 5 2

样例输出 Sample Output

22

题解:
#include<iostream>
#define inf 10e6
using namespace std;
int sum[310],f[310][310];
int min(int a,int b)
{
	return a>b?b:a;
}
int dp(int l,int r)
{
	int k;
	if(l==r) return 0;
	for(k=l;k<r;k++)
	{
		if(f[l][k]==inf) f[l][k]=dp(l,k);
		if(f[k+1][r]==inf) f[k+1][r]=dp(k+1,r);
		f[l][r]=min(f[l][r],f[l][k]+f[k+1][r]+sum[r]-sum[l-1]); 
	}
	return f[l][r];
}
int main()
{
	int n,t;
	cin>>n;
	for(int i=0;i<310;i++)
	 for(int j=0;j<310;j++) f[i][j]=inf; 
	 
	for(int i=1;i<=n;i++)
	{
		cin>>t;
		sum[i]+=sum[i-1]+t;
		f[i][i]=0;
	}
	cout<<dp(1,n)<<endl;
	return 0;
}
<span style="box-sizing: border-box; color: rgb(88, 102, 110); font-family: "Source Sans Pro", "Helvetica Neue", Helvetica, Arial, 微软雅黑, 黑体, sans-serif; font-size: 24px; line-height: 26.4px; background-color: rgb(240, 243, 244);">2192 删数</span>
题目描述 Description

有N个不同的正整数数x1, x2, ... xN 排成一排,我们可以从左边或右边去掉连续的i个数(只能从两边删除数),1<=i<=n,剩下N-i个数,再把剩下的数按以上操作处理,直到所有的数都被删除为止。
每次操作都有一个操作价值,比如现在要删除从i位置到k位置上的所有的数。操作价值为|xi – xk|*(k-i+1),如果只去掉一个数,操作价值为这个数的值。
任务
如何操作可以得到最大值,求操作的最大价值。

输入描述 Input Description

输入文件remove.in 的第一行为一个正整数N,第二行有N个用空格隔开的N个不同的正整数。
N个操作数为1..1000 之间的整数。

输出描述 Output Description

输出文件remove.out 包含一个正整数,为操作的最大值

样例输入 Sample Input

6
54 29 196 21 133 118

样例输出 Sample Output

768

数据范围及提示 Data Size & Hint

3<=N<=100

#include<iostream>
using namespace std;
int f[200][200],a[200];
char s[100000000000]; 
int max(int a,int b)
{
	return a>b?a:b;
}
int abs(int x)
{
	return x>0?x:-x;
}
int dp(int l,int r)
{
	int x=-100;
	if(f[l][r]) return f[l][r];
	if(l==r) return a[l];
	if(l>r) return 0;
	for(int i=0;i<2;i++)
	  for(int j=2;j<=r-l+1;j++)
	  {
          if(i==0) 
		  	x=max(x,j*abs(a[l+j-1]-a[l])+dp(l+j,r));
          else if(i==1) 
		  	x=max(x,j*abs(a[r-j+1]-a[r])+dp(l,r-j));
	  }
	x=max(x,a[l]+dp(l+1,r));
	x=max(x,a[r]+dp(l,r-1));
	f[l][r]=x;
	return f[l][r]; 
}
int main()
{
	int n;
	cin>>n;
	for(int i=1;i<=n;i++) cin>>a[i];
	cout<<dp(1,n)<<endl;
	return 0;
}
<span style="box-sizing: border-box; color: rgb(88, 102, 110); font-family: "Source Sans Pro", "Helvetica Neue", Helvetica, Arial, 微软雅黑, 黑体, sans-serif; font-size: 24px; line-height: 26.4px; background-color: rgb(240, 243, 244);">1090 加分二叉树</span>

题目描述 Description

设一个n个节点的二叉树tree的中序遍历为(l,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第j个节点的分数为ditree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:

subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数

若某个子树为主,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空

子树。

试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。要求输出;

1tree的最高加分

2tree的前序遍历

 

 

现在,请你帮助你的好朋友XZ设计一个程序,求得正确的答案。

输入描述 Input Description

1行:一个整数nn<=30),为节点个数。

2行:n个用空格隔开的整数,为每个节点的分数(分数<=100

输出描述 Output Description

1行:一个整数,为最高加分(结果不会超过4,000,000,000)。

2行:n个用空格隔开的整数,为该树的前序遍历。

样例输入 Sample Input

5

5 7 1 2 10

样例输出 Sample Output

145

3 1 2 4 5

数据范围及提示 Data Size & Hint

nn<=30)

分数<=100

#include<iostream>
using namespace std;
int a[50],f[50][50],g[50][50];
int dp(int l,int r)
{
    int t;
	if(l>r) return 1;
	if(l==r) return a[l];
	if(f[l][r]) return f[l][r];
	for(int k=l;k<=r;k++)
	{
		t=dp(l,k-1)*dp(k+1,r)+a[k];
		if(t>f[l][r])
		{
			f[l][r]=t;
			g[l][r]=k;
		}
	}
	return f[l][r];
}
void print(int a,int b)
{
	if(a>b) return;
    if(a==b)
	{
		cout<<a<<" ";
		return;
	}
	cout<<g[a][b]<<" ";
	print(a,g[a][b]-1);
	print(g[a][b]+1,b);
}
int main()
{
	int n;
	cin>>n;
	for(int i=1;i<=n;i++) cin>>a[i];
	cout<<dp(1,n)<<endl;
	print(1,n);
	return 0;
}

然后就可以看出区间DP的一般套路:

DP(l,r)
{
  判断边界(l>r or l=r or f[l][r]!=0)
  枚举k值,划分中间状态
  {
      if(f[l][k]...) f[l][k]=DP(l,k);
      if(f[k+1][r]...) f[k+1][r]=DP(k+1,r);
      f[l][r]=min or max(f[l][r],f[l][k]...f[k+1][r])此处视具体题目要求
    }
    return f[l][r];
}
main
{
   读取数据;
   cout<<DP(1,n)
}
//以上为区间DP的一般套路,如果题目有其他特殊要求应适度变化,如删数:
for 枚举两种操作
           for 枚举k值,划分中间状态





  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值