DAG
考虑一架飞机能完成任务 i 之后能赶去完成任务 j,那么就在这两个任务之间连一条线,最后求的就是最少链覆盖所有点,即DAG。实际上就是把每个点拆成 x,y, 上述就是把
ix
连接
jy
,然后跑一次二分图最大匹配,最后总飞机数就是 m-solve(),因为每一次配对成功都可以省下一架飞机。
注意一个坑点就是这道题很显然要用floyd进行路径距离优化来判断飞机是否能在完成任务 i 之后去完成任务 j,但是原题要求是飞机飞行一定要是直达,即每个任务的飞行时间不能用经过Floyd优化后的邻接表来计算,被这英文坑了很久。
#include <bits/stdc++.h>
#include <vector>
using namespace std;
const int N = 5000 + 10;
bool dis[N][N];
bool vis[N];
int cy[N], a[N][N], p[N], n, m, ans, uN, vN, a1[N][N];
void floyd() {
for(int k = 1; k <= m; k++)
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
if(dis[i][k] && dis[k][j])//传递可达性
dis[i][j] = true;
}
int linker[N];
bool used[N];
bool dfs(int u) {
for(int v = 1; v <= vN; v++) if(dis[u][v] && !used[v]) {
used[v] = true;
if(linker[v] == -1 || dfs(linker[v])) {
linker[v] = u;
return true;
}
}
return false;
}
int hungary() {
uN = vN = m;
int res = 0;
memset(linker, -1, sizeof(linker));
for(int u = 1; u <= uN; u++) {
memset(used, false, sizeof(used));
if (dfs(u)) res++;
}
return res;
}
struct Node {
int s, f, t;
Node() {}
bool operator<(const Node other) const {
return t<other.t;
}
};
Node b[N];
int main() {
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &p[i]);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) {
scanf("%d", &a[i][j]);
if (i != j) a[i][j] += p[j];
a1[i][j] = a[i][j];
}
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++) if (i != k)
for (int j = 1; j <= n; j++) if (i != j && k != j) {
a[i][j] = min(a[i][j], a[i][k]+a[k][j]);
}
for (int i = 1; i <= m; i++)
for (int j = 1; j <= m; j++) dis[i][j] = false;
for (int i = 1; i <= m; i++) scanf("%d %d %d", &b[i].s, &b[i].f, &b[i].t);
sort(b+1, b+1+m);
for (int i = 1; i <= m; i++)
for (int j = i+1; j <= m; j++) if (b[i].t+a1[b[i].s][b[i].f]+a[b[i].f][b[j].s] <= b[j].t) {
dis[i][j] = true;
}
ans = m-hungary();
printf("%d\n", ans);
return 0;
}