弱分类器的强势体:逻辑回归算法与推导

 逻辑回归的函数表达式为 

 

 用极大似然估计求解

 每个样本发生的后验概率为

 

则所以样本发生总概率即似然函数为

    

L(θ)即为目标函数,-L(θ)即为loss函数,求-L(θ)最小

对数L(θ)函数为


θ求导,即

无法求解。

用梯度下降法逼近最佳值,这里用的是梯度上升法,因为要求L(θ)最大值,其实道理一样。


整体梯度上升算法:

初始化wT=1

重复直至收敛:

计算整体梯度(l(θ)/θ)

根据θ+α*l(θ)/θ)来更新回归系数wT

随机梯度上升算法:

初始化wT=1

重复直至收敛:

计算随机每个样本梯度(∂l(θ)/∂θ)

根据θ+α*(∂l(θ)/∂θ)来更新回归系数wT


逻辑回归的优点是实现简单,分类快。缺点是容易欠拟合,只能处理二分类问题(加上softmax优化可用于多分类),但是必须是线性可分的数据。

具体代码实现见我的github链接:https://github.com/AlanLin2015/Machine-Learning/tree/master/Logistics%20regressions

阅读更多
个人分类: 机器学习
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

弱分类器的强势体:逻辑回归算法与推导

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭