为什么有的AI模型能自我改进,而有的却不行?——从斯坦福研究看大模型的“思考”秘密

当我们给AI模型额外的计算资源和“思考”时间时,为什么有的模型能显著提升性能,而有的却几乎停滞不前?这个问题不仅关乎技术细节,更触及了AI如何像人类一样“学会思考”的核心。最近,斯坦福大学的一项研究(论文标题:Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly Effective STaRs,链接:arXiv:2503.01307)通过对比Qwen-2.5-3B和Llama-3.2-3B在强化学习中的表现,揭示了大模型自我改进能力背后的机制。本文将带你深入探讨这项研究的发现,解答为何Qwen能“天生”自我纠错,而Llama需要“后天引导”才能进步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据与算法架构提升之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值